1. AEMET. 2016. Evaluación de Modelos Climáticos - Agencia Estatal de Meteorología - AEMET. Gobierno de España. (nd). Retrieved from:http://www.aemet.es/es/idi/clima/evaluacion_modelos_climaticos
2. Aien, A., Pal, M., Khetarpal, S. and Kumar Pandey, S. 2014. Impact of Elevated Atmospheric CO2 Concentration on the Growth and Yield in Two Potato Cultivars. J. Agr. Sci. Tech., 16: 1661-1670.
3. Ávila, C., Guardiola, J. L. and Nebauer, S. G. 2012. Response of the Photosynthetic Apparatus to a Flowering-Inductive Period by Water Stress in Citrus. Trees, 26: 833–840.
4. Brotons, J. M., Manera, J., Conesa, A. and Porras, I. 2013. A Fuzzy Approach to the Loss of Green Colour in Lemon (Citrus lemon L. Burm. f.) Rind during Ripening. Comput. Electron. Agr., 98: 222–232.
5. Casas, A. and Mallent, D. 1988. El Colour de los Frutos Cítricos. I. Generalidades. II. Factores que influyen en el Colour. Influencia de la Especie, de la Variedad y de la Temperatura. Rev. Agroquim. Tecnol. Aliment., 28(2): 184-202.
6. Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A. and Woodward, S. 2011. Development and Evaluation of an Earth-System Model – HadGEM2. Geosci. Model Dev., 4: 1051–1075.
7. European Community. 2001b. Commission Regulation (EC) No.1148/2001 on Checks on Conformity to the Marketing Standards Applicable to Fresh Fruit and Vegetables.
8. European Community. 2001a. Commission Regulation (EC) No. 1799/2001 of 12 September 2001 Laying Down the Marketing Standard for Citrus Fruit.
9. García-Lidón, A., Del Río, J. A., Porras, I, Fuster, M. D. and Ortuño, A. 2003. El Limón y Sus Componentes Bioactivos. Consejería de Agricultura, Agua y Medio Ambiente. Serie Técnica Nº 25, I.S.B.N.: 84-688-2698-7; Consejería de Agricultura, Agua y Medio Ambiente; Murcia – Spain, 127 pp.
10. Gordo, O. and Sanz, J. J. 2010. Impact of Climate Change on Plant Phenology in Mediterranean Ecosystems. Glob. Change Biol., 16: 1082–1106.
11. Fitchett J. M., Grab S. W., Thompson D. I. and Roshand G., 2014. Spatio-Temporal Variation in Phenological Response of Citrus to Climate Change in Iran: 1960–2010. Agri. Forest Meteorol., 198–199: 285–293.
12. Han, J. H., Cho, J. G.; Son, In-C. Kim, S. H. and Lee, In-B., Choi, In-M. and Kim, D. 2012. Effects of Elevated Carbon Dioxide and Temperature on Photosynthesis and Fruit Characteristics of ‘Niitaka’ Pear (Pyrus pyrifolia Nakai). Hort. Environ. Biotechnol., 53(5): 357-361.
13. Hutchings, J. B. 1994. Food Colour and Appearance. Univ. Press. Cambridge, Great Britain, 513 pp.
14. Hunter, R. S. 1967. Development of the Citrus Colourimeter. Food Technol., 21: 100-105.
15. Kumar, A., Sharma, P. and Joshi, S. 2016. Assessing the Impacts of Climate Change on Land Productivity in Indian Crop Agriculture: An Evidence from Panel Data Analysis. J. Agr. Sci. Tech., 18: 1-13.
16. MacDougall, D. B. 2002. Colour Measurement of Food: Principles and Practice. In: “Colour in Food: Improving Quality”, (Ed.): MacDougall, D. B. Woodhead Publishing Limited, Cambridge, England, 3: 33-63.
17. Manera, F. J., Brotons, J. M., Conesa, A. and Porras, I., 2012a. Influence of Temperature on the Beginning of Degreening in Lemon Peel. Sci. Hortic., 145: 34-38.
18. Manera, F. J, Brotons, J. M., Conesa, A. and Porras, I. 2012b. Relationship between Air Temperature and Degreening of Lemon (Citrus lemon L. Burm. f.) Peel Colour during Maturation. Aust. J. Crop Sci., 6(6): 1051-1058.
19. Mechlia, N. and Carrol, J. J. 1989. Agroclimatic Modeling for the Simulation of Phenology, Yield, and Quality of Crop Production. 1. Citrus Response Formulation. Int. J. Biometeorol., 33: 36–51.
20. Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. F., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P. and Wilbanks, T. J. 2010. The Next Generation of Scenarios for Climate Change Research and Assessment. Nature, 463: 747-756.
21. Rosenzweig, C. and Hillel, D. 1998. Climate Change and the Global Harvest: Potential Impacts of the Greenhouse Effect on Agriculture. Oxford University Press, New York, 1998; ISBN 0‐19‐508889‐1
22. SIAM. 2016. Sistema de Información Agraria de Murcia. Retrieved February 14, 2016, from: http://siam.imida.es/apex/f?p=101:1:660234344143629
23. Stocker, T. F., Qin, D., Plattner, G. -K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M. 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, 2013: Climate Change 2013, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 PP. doi:10.1017/CBO9781107415324
24. Sugiura, T., Ogawa, H., Fukuda, N. and Moriguchi. T. 2013. Changes in the Taste and Textural Attributes of Apples in Response to Climate Change. Sci. Rep., 3(2418): 1-7.
25. Tubiello, F. N., Rosenzweig, C., Goldberg, R. A., Jagtap, S. and Jones, J. W. 2002a. Effects of Climate Change on US Crop Production: Simulation Results Using Two Different GCM Scenarios. Part I. Wheat, Potato, Maize, and Citrus, Clim. Res., 20: 259–270.
26. Tubiello, F. N. and Ewert, F. 2002b. Simulating the Effects of Elevated CO2 on Crops: Approaches and Applications for Climate Change. Eur. J. Agron., 18: 57-74.
27. Volodin, E. M., Dianskii, N. A. and Gusev, A. V. 2010. Simulating Present Day Climate with the INMCM4.0 Coupled Model of the Atmospheric and Oceanic General Circulations. Izv. Atmos. Ocean. Phy., 46(4): 414–431.
28. Wu, T. 2012. A Mass-Flux Cumulus Parameterization Scheme for Large-Scale Models: Description and Test with Observations. Clim. Dyn., 38: 725-744.