Modelling Mass Transfer during Hot Air Drying of Banana Using Cellular Automaton

Authors
Departments of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran.
Abstract
Cellular Automaton (CA) was applied, for the first time, to model mass transfer during the drying process. CA is a discrete model with powerful potential application for simulating complex systems. In this paper, a two-Dimensional (2D) model was applied to simulate drying process of banana slices. The system was designed for a grid with size of 30×90 square cells, four possible states, and von Neumann neighborhoods. The logical trends of the model results were examined by running program for different process conditions such as various temperatures, air relative humidity values, air flow velocities, and sample thicknesses. Validation of the model was performed by comparing estimated and experimental data of banana drying for three temperatures (60, 70, and 80°C). The model showed high accuracy for predicting moisture content (R2 values higher than 0.99). Notable accuracy based on simple rules to pattern the complexity of the system and flexibility indicated the superior application of cellular automaton for modeling food processes.

Keywords

Subjects


1. Azizi, S. and Peyghambarzadeh, S. 2011. Effect of Temperature History on Mass Transfer Diffusivity in Convective Drying Process. World Appl. Sci. J., 13(4): 697-705.
2. Babalis, S. J. and Belessiotis, V. G. 2004. Influence of the Drying Conditions on the Drying Constants and Moisture Diffusivity during the Thin-Layer Drying of Figs. J. Food Eng., 65(3): 449-458.
3. Baini, R. and Langish, T. A. G. 2007. Choosing an Appropriate Drying Model for Intermittent and Continuous Drying of Bananas. J. Food Eng., 79(1): 330-343.
4. Baini, R. and Langish, T. A. G. 2008. An Assessment of the Mechanisms for Diffusion in the Drying of Bananas. J. Food Eng., 85(2): 201-214.
5. Bandman, O.L. 1999. Comparative Study of Cellular-Automata Diffusion Models. In: "Parallel Computing Technologies: PaCT 1999" (Ed.): Malyshkin, V. . Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 1662: 395-409.
6. Boudhrioua, N., Michon, C., Cuvelier, G. and Bonazzi, C. 2002. Influence of Ripeness and Air Temperature on Changes in Banana Texture during Drying. J. Food Eng., 55(2): 115-121.
7. Choi, Y. and Okos., M. R. 1986. Effects of Temperature and Composition on the Thermal Properties of Foods. In: "Food Engineering and Process Applications", (Eds.): M. LeMaguer, M. and Jelen, P. Elsevier Applied Science, London, 1: 93-101.
8. Conway, J. H., Guy, R. K. and Elwyn, R. B. 1982. Winning Ways, for Your Mathematical Plays. Am. Math. Mon., 93(5): 411-414.
9. da Silva, W. P., e Silva, C. M. D. P. S., Gama, F. J. A. and Gomes, J. P. 2014. Mathematical Models to Describe Thin-Layer Drying and to Determine Drying Rate of Whole Bananas. J. Saudi Soc. Agric. Sci., 13(1): 67-74.
10. Demirel, D. and Turhan, M. 2003. Air-Drying Behavior of Dwarf Cavendish and Gos Michel Banana Slices. J. Food Eng., 59(1): 1-11.
11. Doymaz, I. 2004. Convective Air Drying Characteristics of Thin Layer Carrots. J. Food Eng., 61(3): 359-364.
12. Engelbrecht, A. M. 2008. Modelling of Mass Transfer in Packing Materials with Cellular Automata. Stellenbosch University, Stellenbosch.
13. Ertekin, C. and Yaldiz, O. 2004. Drying of Eggplant and Selection of a Suitable Thin layer Drying Model. J. Food Eng., 63(3): 349-359.
14. Fathi, M., Mohebbi, M., Varshosaz, J. and Shahidi, F. 2013. Cellular Automata Modeling of Hesperetin Release Phenomenon from Lipid Nanocarriers. Food Bioproc. Tech., 6(11): 3134-3142.
15. Fernandes, F. A., Rodrigues, S., Gaspareto, O. C. and Oliveira, E. L. 2006. Optimization of Osmotic Dehydration of Bananas Followed by Air-Drying. J. Food Eng., 77(1): 188-193.
16. Gardner, M. 1970. Mathematical Games: The Fantastic Combinations of John Conway’s New Solitaire Game “Life”. Sci. Am., 223(4): 120-123.
17. Hailu, M., Workneh, T. and Belew, D. 2013. Review on Postharvest Technology of Banana Fruit. Afr. J. Biotechnol., 12(7): 635-647.
18. Hernandez-Perez, J., Garcıa-Alvarado, M., Trystram, G. and Heyd, B. 2004. Neural Networks for the Heat and Mass Transfer Prediction during Drying of Cassava and Mango. Innov. Food Sci. Emerg. Technol., 5(1): 57-64.
19. Holman, J. 2001. Heat Transfer. Eighth SI Metric Edition, McGaw-Hill Inc.
20. Inazu, T., Iwasaki, K. -I. and Furuta, T. 2002. Effect of Temperature and Relative Humidity on Drying Kinetics of Fresh Japanese Noodle (Udon). LWT-J. Food Sci. Technol., 35(8): 649-655.
21. Ivanov, S., Troyankin, A., Gurikov, P., Kolnoochenko, A., Menshutina, N., Pistikopoulos, E., Georgiadis, M. and Kokossis, A. 2011. 3D Cellular Automata for Modeling of Spray Freeze Drying Process. Computer Aided Chem. Eng., 29: 136-140.
22. Johannes Laaksonen, T., Mikael Laaksonen, H., Tapio Hirvonen, J. and Murtomäki, L. 2009. Cellular Automata Model for Drug Release from Binary Matrix and Reservoir Polymeric Devices. Biomat., 30(10): 1978-1987.
23. Kier, L., Cheng, C. and Seybold, P. 2000. Cellular Automata Models of Chemical Systems. SAR QSAR Environ. Res., 11(2): 79-102.
24. Luikov, A. V. 1968. Analytical Heat Diffusion Theory. Academic Press, Inc., London.
25. Maskan, M. 2000. Microwave/air and microwave finish drying of banana. J. Food Eng., 44(2): 71-78.
26. Maskan, A., Kaya, S. and Maskan, M. 2002. Hot Air and Sun Drying of Gape Leather (Pestil). J. Food Eng., 54(1): 81-88.
27. Neumann, J. V. 1966. In Theory of Self-Replicating Automata. In A. Burks (Ed.). University of Illinois Press, Urbana. PP. 63-78
28. Nguyen, M. -H. and Price, W. E. 2007. Air-Drying of Banana: Influence of Experimental Parameters, Slab Thickness, Banana Maturity and Harvesting Season. J. Food Eng., 79(1): 200-207.
29. Orikasa, T., Wu, L., Shiina, T. and Tagawa, A. 2008. Drying Characteristics of Kiwifruit during Hot Air Drying. J. Food Eng., 85(2): 303-308.
30. Pink, J., Naczk, M. and Pink, D. 1998. Evaluation of the Quality of Frozen Minced Red Hake: Use of Fourier Transform Infrared Spectroscopy. J. Agric. Food. Chem., 46(9): 3667-3672.
31. Sankat, C., Castaignne, F. and Maharaj, R. 1992. Banana Dehydration: Osmotic, Air and Solar Effects. MUJUMDAR AS Drying, 92: 1679-1688.
32. Sinija, V. and Mishra, H. 2011. FTNIR Spectroscopic Method for Determination of Moisture Content in Geen Tea Ganules. Food Bioproc. Tech., 4(1): 136-141.
33. Ulam, S. 1952. Random Processes and Transformations. In Proceedings of the International Congress on Mathematics, 30 August-6 September 1950, Cambridge 2: 264-275.
34. Van der Weeën P., De Clercq N., Dewettinck K. and De Baets B. 2012. A CA-Based Model Describing Fat Bloom in Chocolate. In: "Cellular Automata: ACRI 2012", (Eds.): Sirakoulis, G. C. and Bandini, S. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 7495.
35. Velić, D., Planinić, M., Tomas, S. and Bilić, M. 2004. Influence of Airflow Velocity on Kinetics of Convection Apple Drying. J. Food Eng., 64(1): 97-102.
36. von Neumann, J. 1951. The General and Logical Theory of Automata. In: "Cerebral Mechanisms in Behavior" (Ed.): Jeffress, L. A. The Hixon Symposium, Wiley, Oxford, England, PP. 1-41.
37. Wolfram, S. 1986. Approaches to Complexity Engineering. Physica D, 2(3): 385-399.
38. Wolfram, S. 1998. Cellular Automata as Models of Complexity. Nature, Int. Wkly J. Sci., 311(5985): 419-424.
39. Wolfram, S. 2002. A New Kind of Science. Wolfram Media, Champaign IL, PP. 1-1197.
40. Yang, X. S. and Y., Y. 2005. Cellular Automata, PDEs, and Pattern Formation. In: "Cellular Automata and Lattice Gases (Nlin.CG); Pattern Formation and Solitons", (Eds.): Olariu, S. and Zomaya, A. Y. Chapman and Hall/CRC Press, PP. 271-282.