1. Bussay, A., van der Velde, M., Fumagalli, D. and Seguini, L. 2015. Improving Operational Maize Yield Forecasting in Hungary. Agric. Syst., 141: 94–106.
2. Central Statistical Office. 2015. Statistical Yearbook of Agriculture, 2015. (Eds.): Witkowski, J. and Dmochowska, H., Statistial Publishing Establishment, Central Statistial Office, Warsaw.
3. Domínguez, J.A., Kumhálová, J. and Novák, P. 2015. Winter Oilseed Rape and Winter Wheat Growth Prediction Using Remote Sensing Methods. Plant, Soil Environ., 61: 410–416.
4. Emamgholizadeh, S., Parsaeian, M. and Baradaran, M. 2015. Seed Yield Prediction of Sesame Using Artificial Neural Network. Eur. J. Agron., 68: 89–96. Elsevier B.V.
5. Grahovac, J., Jokić, A., Dodić, J., Vućurović, D. and Dodić, S. 2016. Modelling and Prediction of Bioethanol Production from Intermediates and Byproduct of Sugar Beet Processing Using Neural Networks. Renew. Ener., 85: 953–958.
6. Grzesiak, W., Błaszczyk, P. and Lacroix, R. 2006. Methods of Predicting Milk Yield in Dairy Cows-Predictive Capabilities of Wood’s Lactation Curve and Artificial Neural Networks (ANNs). Comput. Electron. Agric., 54: 69–83.
7. Guérif, M. and Duke, C. 1998. Calibration of the SUCROS Emergence and Early Growth Module for Sugar Beet Using Optical Remote Sensing Data Assimilation. Eur. J. Agron., 9: 127–136.
8. Kantanantha, N., Serban, N. and Griffin, P. 2010. Yield and Price Forecasting for Stochastic Crop Decision Planning. J. Agric. Biol. Environ. Stat., 15: 362–380.
9. Khairunniza-Bejo, S., Mustaffha, S., Ishak, W. and Ismail, W. 2014. Application of Artificial Neural Network in Predicting Crop Yield: A Review. J. Food Sci. Eng. 4: 1–9.
10. Khashei-Siuki, A., Kouchakzadeh, M. and Ghahraman, B. 2011. Predicting Dryland Wheat Yield from Meteorological Data Using Expert System, Khorasan Province, Iran. J. Agr. Sci. Tech., 13: 627–640.
11. Khoshnevisan, B., Rafiee, S., Iqbal, J., Omid, M., Badrul, N. and Wahab, A. W. A. 2015. A Comparative Study Between Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference Systems for Modeling Energy Consumption in Greenhouse Tomato Production : A Case Study in Isfahan Province. J. Agr. Sci. Tech., 17: 49–62.
12. Klem, K., Váňová, M., Hajšlová, J., Lancová, K. and Sehnalová, M. 2007. A Neural Network Model for Prediction of Deoxynivalenol Content in Wheat Grain Based on Weather Data and Preceding Crop. Plant, Soil Environ., 53: 421–429.
13. Li, F., Qiao, J., Han, H. and Yang, C. 2016. A Self-Organizing Cascade Neural Network with Random Weights for Nonlinear System Modeling. Appl. Soft Comput., 42: 184–193.
14. Mohammadi, K., Eslami, H. R. and Dardashti, S. D. 2005. Comparison of Regression, Arima and Ann Models for Reservoir Inflow Forecasting Using Snowmelt Equivalent (a Case Study of Karaj). J. Agr. Sci. Tech., 7: 17–30.
15. Nelson, G. C., H. Valin, R. D. Sands, P. Havlík, H. Ahammad, D. Deryng, J. Elliott, Sh. Fujimori, T. Hasegawa, E. Heyhoe, P. Kyle, M. Von Lampe, H. Lotze-Campen, D. Mason d’Croz, H. van Meijl, D. van der Mensbrugghe, Ch. Müller, A. Popp, R. Robertson, Sh. Robinson, E. Schmid, Ch. Schmitz, A. Tabeau, D. Willenbockel. 2014, Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks. Proceedings of the National Academy of Sciences Mar, 111 (9): 3274-3279.
16. Neruda, M. and Neruda, R. 2002. To Contemplate Quantitative and Qualitative Water Features by Neural Networks Method. Plant Soil Environ., 2002: 322–326.
17. Niedbała, G., N. Mioduszewska , W. Mueller , P. Boniecki , D. Wojcieszak , K. Koszela , S. Kujawa , R. J. Kozłowski , K. Przybył 2016. Use of Computer Image Analysis Methods to Evaluate the Quality Topping Sugar Beets with Using Artificial Neural Networks. In: "Proc. SPIE 10033", (Eds.): Falco, C. M. and Jiang, X. Eighth International Conference on Digital Image Processing (ICDIP 2016), Chengdu, pp. 574-578, 100332M
18. Niedbała, G., Przybył, J. and Sęk, T. 2007. Prognosis of the Content of Sugar in the Roots of Sugar-Beet with Utilization of the Regression and Neural Techniques. Agric. Eng., 2: 225–234.
19. Park, S. J., Hwang, C. S. and Vlek, P. L. G. 2005. Comparison of Adaptive Techniques to Predict Crop Yield Response under Varying Soil and Land Management Conditions. Agric. Syst., 85: 59–81.
20. Parviz, L., Kholghi, M. and Hoorfar, A. 2010. A Comparison of the Efficiency of Parameter Estimation Methods in the Context of Streamflow Forecasting. J. Agr. Sci. Tech., 12: 47–60.
21. Safa, M., Samarasinghe, S. and Nejat, M. 2015. Prediction of Wheat Production Using Artificial Neural Networks and Investigating Indirect Factors Affecting It : Case Study in Canterbury Province , New Zealand. J. Agr. Sci. Tech., 17: 791–803.
22. Shearer, J. R., Burks, T. F., Fulton, J. P. and Higgins, S. F. 2000. Yield Prediction Using A Neural Network Classifier Trained Using Soil Landscape Features and Soil Fertility Data . Annu. Int. Meet. Midwest Express Cent., pp. 5–9.
23. Stańko, S. 2013. Prognozowanie w Agrobiznesie. Teoria i Przykłady Zastosowania. Wydanie I, Wydawnictwo SGGW, Warszawa.
24. Sudhishri, S., Kumar, A. and Singh, J. K. 2016. Comparative Evaluation of Neural Network and Regression Based Models to Simulate Runoff and Sediment Yield in an Outer Himalayan Watershed. J. Agr. Sci. Tech. 18: 681–694.
25. Vandendriessche, H. J. 2000. A Model of Growth and Sugar Accumulation of Sugar Beet for Potential Production Conditions: SUBEMOpo I. Theory and Model Structure. Agric. Syst., 64: 21–35.
26. Zhang, G. P., Patuwo, E. B. and Michael, Y.,H. 1998. Forecasting with Artificial Neural Networks: The State of the Art. Int. J. Forecast., 14: 35–62.