1. Argaw, A. 2012. Evaluation of Co-Inoculation of Bradyrhizobium japonicum and Phosphate Solubilizing Pseudomonas spp. Effect on Soybean (Glycine max L. (Merr.)) in Assossa Area. J. Agr. Sci. Tech., 14: 213-224.
2. Ahloowalia, B.S., Maluszynski, M. and K. Nichterlein. 2004. Global Impact of Mutation-Derived Varieties. Euphytica, 135: 187–204
3. Amami, A. 1996. Methods for Plant Analysis. Soil and Water Research Institute, Ministry of Agriculture Jihad, 1(982): 265.
4. Beck, D. P., Materon L. A. and Afandi F. 1993. Practical Rhizobium Legume Technology. Manual No. 19 ICARDA, 389 PP.
5. Bradshaw, J. E. 2016. Mutation Breeding Plant Breeding: Past, Present and Future. Springer Int. Publ., Switzerland, DOI 10.1007/978-3-319-23285-0_16
6. FAO. 1984. Legume Inoculation and Their Use. Food and Agriculture Organization of the United Nations, Rome, 63 PP.
7. Fehr, W., R., Caviness, C. E., Burmood, D. T. and Pennington, J. S. 1971. State of Development Descriptions for Soybeans. Crop Sci., 11: 929-31.
8. Ferri, G. C., Braccini, A. L., Anghinoni, F. B. G. and Pereira, L. C. 2017. Effects of Associated Co-Inoculation of Bradyrhizobium japonicum with Azospirillum brasilense on Soybean Yield and Growth. Afr. J. Agric. Res., 12(1): 6-11.
9. Furlani, Â. M. C., Furlani, P. R., Tanaka, R. T., Mascarenhas, H. A. A. and Delgado, M. D. D. P. 2002. Variability of Soybean Germplasm in Relation to Phosphorus Uptake and Use Efficiency. Scientia Agricola, 59(3): 529-536.
10. Gahoonia, T. S. and Nielsen. N. E. 2004. Root Traits as Tools for Creating Phosphorus Efficient Crop Varieties. Plant Soil, 260: 47–57.
11. Hafiz Khan, M. and Dutt Tyagi, S. 2013. A Review on Induced Mutagenesis in Soybean. J. Cereals Oilseeds, 4(2): 19-25.
12. Halvin, J. L., Beaton, J. D., Tisdale, S. L. and Nelson, W. L. 2005. Soil Fertility and Fertilizers: An Introduction to Nutrient Management. Upper Saddle River, Pearson Prentice Hall, New Jersey.
13. Hardarson G. and Danso, S. K. A. 1993. Methods for Measuring Biological Nitrogen Fixation in Grain Legumes. Plant Soil, 152: 19-23.
14. Hardarson, G. and Danso, S. K. A. 1990. Use of 15N Methodology to Assess Biological Nitrogen Fixation. In: "Use of Nuclear Techniques in Studies of Soil-Plant Relationship". IAEA,Vienna, Austria, PP. 129- 160.
15. IAEA. 2017. http://mvgs.iaea.org/Search.aspx
16. Jain, S. M. 2005. Major Mutation-Assisted Plant Breeding Programmes Supported by FAO/IAEA. Plant Cell Tiss. Organ Cult., 82: 113–121.
17. Jain, S. M. and P. Suprasanna. 2011. Induced Mutations for Enhancing Nutrition and Food Production. Gene Conserve., 40: 201–215.
18. Jankowicz-Cieslak, J., Tai, T. H., Kumlehn, J. and Till B., J. 2017. Biotechnologies for Plant Mutation Breeding Protocols. IAEA Press, 343 PP.
19. Keyser, H. H. and Li, F. 1992. Potential for Increasing Biological Nitrogen Fixation in Soybean. Plant Soil, 141: 119- 35.
20. Kharkwal, M. C. and Shu, Q. Y. 2009. The Role of Induced Mutations in World Food Security. In: "Induced Plant Mutations in the Genomics Era". Proceedings of the International Joint FAO/IAEA Symp IAEA, Vienna, PP. 33–38.
21. Khoshgoftarmanesh, A. H. 2010. Advanced Concepts in Plant Nutrition. Isfahan Industrial Publisher, Isfahan, Iran, 369 PP.
22. Mba, C. 2013. Induced Mutations Unleash the Potentials of Plant Genetic Resources for Food and Agriculture. Agron., 3: 200-231.
23. Menezes, J. F. S., da Silva, M. P., Cantão, V. C. G., Caetano, J. O., Benites, V. M., Campos, G. W. B. and dos Santos, B. L. R. 2017. Long-Term Application of Swine Manure on Soybean Grown in No-Till System in Savannah Soils. Afr. J. Agric. Res., 12(7): 487-493.
24. Moreira, A., Moraes, L. A. C. and Fageria, N. K. 2015. Variability on Yield, Nutritional Status, Soil Fertility, and Potassium-Use Efficiency by Soybean Cultivar in Acidic Soil. Commun. Soil Sci. Plant Anal., 46(19): 2490-2508.
25. Raghothama, K. G. 1999. Phosphate Acquisition. Annu. Rev. Plant Biol., 50(1): 665-693.
26. Shu Q. Y. 2009. Induced Plant Mutations in the Genomics Era. Joint FAO and IAEA. 441 PP.
27. Somasegaran P. and Hoben, H. J. 1994. Handbook for Rhizobia: Methods in Legume Rhizobium Technology. Laboratory Manual, (Springer Verlag: New York).
28. Suprasanna, P., Jain, S. M., Ochatt, S.J., Kulkarni, V. M. and Predieri, S. 2012. Applications of In Vitro Techniques in Mutation Breeding of Vegetatively Propagated Crops. In: "Plant Mutation Breeding and Biotechnology", (Eds.): Shu, Q. Y., Forster, B. P. and Nakagawa, H. CABI Publishing, Wallingford, PP. 371–385.
29. Suprasanna, P., Mirajkar, S. J. and Bhagwat, S. G. 2015. Induced Mutations and Crop Improvement. I. Plant Diversity, Organization, Function and Improvement. In: "Plant Biology and Biotechnology", (Eds.): Bahadur, B., Venkat Rajam, M., Sahijram, L. and Krishnamurthy, K. V. Springer India, PP. 593-617.
30. Suprasanna, P., Mirajkar, S. J., Patade, V. Y. and Jain, S. M. 2014. Induced Mutagenesis for Improving Plant Abiotic Stress Tolerance. In: "Mutagenesis: Exploring Novel Genes and Pathways", (Eds.): Tomlekova, N. B., Kozgar, M. I. and Wani, M. R. Wageningen Academic Publishers, PP. 347-376.
31. Tsvetkova, G. E. and Georgiev, G. I. 2003. Effect of Phosphorous Nutrition on the Nodulation, Nitrogen Fixation and Nutrient Use Efficiency of Bradyrhizobium japonicum-Soybean Symbiosis. Bulg. J. Plant Physiol., Special Issue: 331–335
32. Unkovich, M., Herridge, D., Peoples, M., Cadisch, G., Boddey, B., Giller, K., Alves, B. and Chalk, P. 2008. Measuring Plant-Associated Nitrogen Fixation in Agricultural Systems. Australian Centre for International Agricultural Research (ACIAR), 260 PP.
33. Vincent, J. M., 1982. Nitrogen Fixation in Legumes. Academic Press, Sydney, Australia, 228 PP.
34. Younessi Hamzekhanlu, M., Izadi-Darbandi, A., Pirvali-Beiranvand J., Hallajian, M., and Majdabadi, A. 2011. Phenotypic and Molecular Analysis of M7 Generation of Soybean Mutant Lines through Random Amplified Polymorphic DNA (RAPD) Marker and Some Morphological Traits. Afr. J. Agric. Res., 6(7): 1779-1785.
35. Vance, C. P. 2001. Symbiotic Nitrogen Fixation and Phosphorus Acquisition. Plant Nutrition in a World of Declining Renewable Resources. Plant Physiol., 127: 390–397.
36. Vance, C. P., Uhde‐Stone, C. and Allan, D. L. 2003. Phosphorus Acquisition and Use: Critical Adaptations by Plants for Securing a Non Renewable Resource. New Phytol., 157(3): 423-447.
37. Vinod, K. K. and Heuer, S. 2012. Approaches towards Nitrogen- and Phosphorus-Efficient Rice. AoB Plants. doi: [10.1093/aobpla/pls028]
38. Wang, X., Yan, X. and Liao, H. 2010. Genetic improvement for phosphorus efficiency in soybean: a radical approach, Ann. Bot., 106(1): 215–222.