1. Aksoy, H., Unall, N. E., Eris, E. and Yuce, M. I. 2013. Stochastic Modeling of Lake Van Water Level Time Series with Jumps and Multiple Trends. Hydrol. Earth Syst. Sci. Disc., 1: 2353-2371.
2. Altunkaynak, A., Özger, M. and Sen, Z. 2003. Triple Diagram Model of Level Fluctuations in Lake Van, Turkey. Hydrol. Earth Syst. Sci., 7(2): 235–244.
3. Barry, P., Cohn Joseph, E. and Robinson, A. 1976. Forecast Model for Great Lakes Water Levels. The J. Geo., 84(4): 455-465.
4. Box, G. E. P. and Jenkins, G. M. 1976. Time Series Analysis, Forecasting and Control. Holden-Day, Toronto.
5. Delavar, M. 2006. An Investigation of Urmia Lake Level Changes and Coastal Risk Analysis. Thesis (MSc.), Tarbiat Modares University. (in Persian)
6. Delju A. H., Ceylan, A., Piguet, E. and Rebetez, M. 2012. Observed Climate Variability and Change in Urmia Lake Basin, Iran. Theor. Appl. Climatol., 111(1-2): 285-296. DOI 10.1007/s00704-012-0651-9.
7. Domenico, M. D., Ghorbani M. A., Makarynskyy, O., Makarynska, D. and Asadi, H. 2013. Chaos and Reproduction in Sea Level. App. Mat. Mod., 37: 3687-3697.
8. Eimanifar, A. and Mohebbi, F. 2007. Urmia Lake (Northwestern Iran): A Brief Review. Saline Systems, 3:5. DOI:10.1186/1746-1448-3-5
9. Fathian, F. and Morid, S. 2012. Investigating the Trend of Meteorological and Hydrological Variables in Urmia Lake Basin Using Non Parametric Methods. Iran. Wat. Soi. Res., 43(3): 259-269. (in Persian)
10. Fathian, F., Morid, S. and Arshad, S. 2013. Trend Assessment of Land Use Changes Using Remote Sensing Technique and its Relationship with Stream flows Trend (Case Study: The East Sub-Basins of Urmia Lake). J. Wat. Soi., 27(3): 642-655. (in Persian)
11. Guganesharaja, K. and Shaw, E. M. 1984. Forecasting Water Levels for Lake Chad. Wat. Res. Res., 20(8): 1053-1065.
12. Hassanzadeh, E., Zarghami, M. and Hassanzadeh, Y. 2012. Determining the Main Factors in Declining the Urmia Lake Level by Using System Dynamics Modeling. Wat. Res. Man., 26: 129–145.
13. Irvine, K. N. and Eberhardt, A. J. 1992. Multiplicative, Seasonal ARIMA Models for Lake Erie and Lake Ontario Water Levels. Wat. Res. Bul., 28(2): 385–396.
14. Irvine, K. N., Richey, J. E., Holtgrieve, G. W., Sarkkula, J. and Sampson, M. 2011. Spatial and Temporal Variability of Turbidity, Dissolved Oxygen, Conductivity, Temperature, and Fluorescence in the Lower Mekong River–Tonle Sap System Identified Using Continuous Monitoring. Int. J. Riv. Bas. Man., 9(2): 151-168. Available from: http://dx.DOI.org/10.1080/15715124.2011.621430
15. Jadhav, V., Chinnappa Reddy, B. V. and Gaddi, G. M. 2017. Application of ARIMA Models for Forecasting Agricultural Prices. J. Agr. Sci. Tech., 19: 981-992.
16. Jalili, S. Morid, S, Banakar, A. and Namdar Ghanbari, R. 2011. Assessing the Effect of SOI and NAO Indices on Lake Urmia Water Level Variations, Application of Spectral Analysis. J. Wat. Soi., 25(1): 140-149. (in Persian)
17. Jalili, S., Hamidi, S. A., Morid, S. and Namdar Ghanbari, R. 2016. Comparative Analysis of Lake Urmia and Lake Van Water Level Time Series. Arab J. Geo. Sci., 9: 644. DOI 10.1007/s12517-016-2657-6.
18. Khavich, V. and Ben- Zvi, A. 1995. Forecast of Daily Water Levels for Lake Kimieret, Israel. Hydro. Sci. J., 40(2): 133-143.
19. LaValle, P. D., Lakhan, V. C. and Trenhaile, A. S. 2001. Short Term Fluctuations of Lake Erie Water Levels and the El Nino/ Southern Oscillation. The Great Lakes Geographer, 7(1): 1-8.
20. Li, Q., Tricaud, C., Sun, R. and Chen, Y. Q. 2007. Geate Salt Lake Surface Level Forecasting Using FIGARCH Modeling. Proceedings of the ASME, Inter. Des. Eng. Tech. Con. Com. Inf. in Engineering Conference, September 4-7, Las Vegas, Nevada, USA.
21. Mahsafar, H., Maknoon, R. and Saghafian, B. 2011. The Impact of Climate Change on Urmia Lake Water Level. Iran. Wat. Res. Res., 7(1): 47-58. (in Persian)
22. Pekel, J. F., Cottam, A., Gorelick, N. and Belward, A. S. 2016. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature, 540: 418-422.
23. Pengra B. 2012. The Drying of Iran's Lake Urmia and Its Environmental Consequences. UNDP Global Alert Service (GEAS). DOI: 10.1186/1746-1448-3-5.
24. Privalsky, V. 1996. Statistical Analysis and Predictability of Lake Erie Water Level Variations. J. Great Lakes Res, 18(1): 236-243.
25. Rasuly, A. 2005. Modelling of Urmia Lake Coastal Changes by Applying an Integrated RS/GIS Approach. Tabriz Uni. GIS and RS Center, Tabriz. (in Persian)
26. Sellinger, C. E., Stow, C. A., Lamon, E. C. and Qian, S. S. 2008. Recent Water Level Declines in the Lake Michigan-Huron System. Environ. Sci. Technol., 42: 367–373.
27. Sen, Z., Kadioglu, M. and Batur, E. 2000. Stochastic Modeling of Van Lake Monthly Level Fluctuations in Turkey. Theor. Appl. Climatol., 65(1–2): 99–110.
28. Shadkam, S., Ludwig, F., Oel, P. V., Kirmit, C. and Kabat, P. 2016. Impacts of Climate Change and Water Resources Development on the Declining Inflow into Iran’s Urmia Lake. J. Great Lak. Res., 42: 942-952.
29. Sima, S., Tajrishy, M., and Ahmadalipour, A. 2012. Comparison of the Hydro-Meteorological Conditions in Two Adjacent Lakes: Lake Urmia and Lake Van. Poster Presentation: 10293, ASLO2012 Aquatic Sciences Meeting, Japan.
30. Talebizadeh, M. and Moridnejad, A. 2011. Uncertainty Analysis for the Forecast of Lake Level Fluctuations Using Ensembles of ANN and ANFIS Models. Exp. Sys. App., 38: 4126–4135.
31. Thomas, H. A. and Fiering, M. B. 1962. Mathematical Synthesis of Stream Flow Sequences for the Analysis of River Basin by Simulation. Harward Uni. Press, Cambridge.
32. Vandaele, W. 1983. Applied Time Series and Box-Jenkins Models. Academic Press, Inc., New York.
33. Water Research Institute. 2003. Data Report. Integrated Water Resources Management of Urmia Lake. Tehran, Iran. (in Persian)
34. Water Research Institute. 2006. Synthesis Report. Integrated Water Resources Management of Urmia Lake. Tehran, Iran. (in Persian)
35. Zafarnejad F. 2009. The Contribution of Dams to Iran’s Desertification. Int. J. Env. Stu., 66: 327-341.
https://doi.org/10.1080/00207230902798648
36. Zhang, L., Zhang, G. X. and Li, R. R. 2016. Water Quality Analysis and Prediction Using Hybrid Time Series and Neural Network Models. J. Agr. Sci. Tech., 18: 975-983.