Determination of Genotypic Stability and Adaptability in Wheat Genotypes Using Mixed Statistical Models

Authors
1 Department of Agronomy, State University of Maringá – UEM, Maringá, Paraná, Brazil.
2 Central Cooperative of Agricultural Research - COODETEC, Wheat Improvement Program, Cascavel, PR, Brazil.
Abstract
The objective of this study was to evaluate the adaptability and stability of wheat genotypes simultaneously in unbalanced Multi-Environment Trials (MET) in four different regions of Brazil, using the method of harmonic means of the relative performance of genetic values. Mixed model was applied to the analysis of Genotype- Environment Interaction (GEI) in wheat. Grain yield data were obtained from a network of MET carried out at seven locations from 2008 to 2010. A joint of experiments in complete randomized blocks design with some common treatments was used in all 21 experiments. Adaptability and stability parameters were obtained by several different methodologies, based on prediction, Harmonic Mean, and of the Relative Performance of Genotypic Values (HMRPGV). These methodologies ranked in a very similar way the studied genotypes and indicated the genotypes CD0950, CD0857, CD0667, CD0915, CD0914, CD0669, CD0859, and CD0851 as the superior ones for grain yield, adaptability, and stability in all environments. Dourados-MS (2010) was the worst environment with lowest mean (1,560.26 kg ha-1) and São Gotardo–MG (2008) was the best environment with highest mean (5,687.08 kg ha-1). The genotype more stable by HMRPGV across 21 environments tested was CD085; in the best environment, it was ranked the sixth (6,319.30 kg ha-1), but changed your values in the worst environment and was ranked the fifth (2,051.53 kg ha-1). The HMRPGV proved to be a practical and useful statistical tool in the determination of the Value for Cultivation and Use (VCU), particularly in the selection of genotypes’ reliability when genotypes are selected for the environments evaluated. This method has the advantage of providing results that are directly interpreted as breeding values ​​for yield, stability, and adaptability.

Keywords

Subjects


1. Annicchiarico, P., Bellah, F. and Chiari, T. 2005. Defining Sub-Regions and Estimating Benefits for a Specific-Adaptation Strategy by Breeding Programs: A Case Study. Crop Sci., 45: 1741–1749.
2. Ceccarelli, S. 1989. Wide Adaptation: How Wide? Euphytica, 40: 197–205.
3. Cochran, W. G. and Cox, G. M. 1957. Experimental Designs. Second Edition, John Wiley and Sons, New York, USA.
4. Colombari-Filho, J. M., Resende, M. D. V., de Morais, O. P., Castro, A. P., Guimaraes, E. L., Pereira, J. M., Utumi, M. M. and Breseghello, F. 2013. Upland Rice Breeding in Brazil: A Simultaneous Genotypic Evaluation of Stability, Adaptability and Grain Yield. Euphytica, 192:117–129.
5. Cunha, G. R., Scheeren, P. L., Pires, J. L. F., Maluf, J. R. T., Pasinato, A., Caierão, E., Silva, M. S., Dotto, S. R., Campos, L. A. C., Felício, J. C., Castro, R. L., Marchioro, V., Riede, C. R., Rosa Filho, O., Tonon, V. D. and Svoboda, L. H. 2006. Regiões de Adaptação para Trigo no Brasil. Trigo Embrapa, Passo Fundo, Brazil, (Circular Técnica Online, 20). Available at: http://www.cnpt.embrapa.br/biblio/ci/p_ci20.pdf. Accessed in November 4, 2016.
6. Duarte, J. B. and Vencovsky, R. 2001. Estimation and Prediction Using Linear Mixed Models: The Ranking of Means of Genetic Treatments. Sci. Agric., 58: 109–117.
7. Duarte, J. B., Vencovsky, R. and Dias, T. S. 2001. Estimators of Variance Components in the Augmented Block Design with New Treatments from One or More Populations. Pesq. Agropec. Bras., 36: 1155–1167.
8. Duarte, J. B. and Zimmermann, M. J. O. 1995. Correlation among Yield Stability Parameters in Common Bean. Crop Sci., 35: 905–912.
9. Fietz, C. R., Sousa, P. G. and Urcher, M. A. 2005. Análise da Epoca de Semeadura Para Trigo na Região de Dourados, MS. Ver. Bras. Agromet., 13: 59–63.
10. Almeida–Filho, J. E., Tardin, F. D., Resende, M. D. V., Silva, F. F., Granato, I. S. C. and Menezes, C. B. 2014. Genetic Evaluation of Grain Sorghum Hybrids in Brazilian Environments Using the REML/BLUP Procedure. Sci. Agric., 71: 146–150.
11. Gauch, H. G. and Zobel, R. W. 1997. Identifying Mega-Environments and Targeting Genotypes. Crop Sci., 37: 311–326.
12. Kendal, E. 2015. Determination of Relationship between Chlorophyll and Other Features in Durum Wheat (Triticum turgidum L. var. durum) Using SPAD and Biplot Analyses. J. Agr. Sci. Tech., 17:1873-1886.
13. Kendal, E. and Sayar, M. S. 2016. The Stability of Some Spring Triticale Genotypes Using Biplot Analysis. J. Anim. Plant Sci., 26(3): 754-765.
14. Khalili, M. and Pour-Aboughadareh, A. 2016. Parametric and Non-Parametric Measures for Evaluating Yield Stability and Adaptability in Barley Doubled Haploid Lines. J. Agr. Sci. Tech., 18:789–803.
15. Lin, C. S. and Binns, M. R. 1988. A Method of Analyzing Cultivars×Location×Year Experiments: New Stability Parameter. Theor. Appl. Genet., 76: 425–430.
16. Mendes, F. F., Guimarães, L. J. M., Souza, J. C., Guimarães, P. E. O., Pacheco, C. A. P., Machado, J. R. A., Meirelles, W. F., Resende, A. and Parentoni, S.N. 2012. Adaptability and Stability of Maize Varieties Using Mixed Models Methodology. Crop Breed. Appl. Biotechnol., 12: 111–117.
17. Mohammadia, R., Farshadfara, E. and Amric, A. 2015. Interpreting Genotype×Environment Interactions for Grain Yield of Rainfed Durum Wheat in Iran. Crop J., 3: 526–535.
18. Mortazavian, S. M. M., Nikkhah, H. R., Hassani, F. A., Hosseini, S., Taheri, M., Mahloohi, M. 2014. GGE Biplot and AMMI Analysis of Yield Performance of Barley Genotypes across Different Environments in Iran. J. Agr. Sci. Tech., 16: 609–622.16.
19. Patterson, H. D. and Thompson, R. 1971. Recovery of Interblock Information When Block Sizes Are Unequal. Biometrika, 58: 545–554.
20. Piepho, H. P., Büchse, A. and Emrich, K. 2003. A Hitchhiker's Guide to Mixed Models for Randomized Experiments. J. Agron. Crop Sci., 189: 310–322.
21. Piepho, H. P. and Möhring, J. 2006. Selection in Cultivar Trials: Is It Ignorable? Crop Sci., 146: 193–202.
22. Piepho, H. P., Möhring, J., Melchinger, A. E. and Büchse, A. 2008. BLUP for Phenotypic Selection in Plant Breeding and Variety Testing. Euphytica, 161: 209–228.
23. Pimentel Gomes, F. and Guimarães, R. F. 1958. Joint Analysis of Experiments in Complete Blocks Designs with Some Common Treatments. Biometrics, 14: 521–526.
24. Resende, M. D. V. 2002. Genética Biométrica e Estatística No Melhoramento de Plantas Perenes. Embrapa Informação Tecnológica, Brasília, Brazil.
25. Resende, M. D. V. 2007a. Matemática e Estatística na Análise de Experimentos e No Melhoramento Genético. Embrapa Florestas, Colombo, Brazil.
26. Resende, M. D. V. 2007b. SELEGEN-REML/BLUP: Sistema Estatístico e Seleção Genética Computadorizada viam Modelos Lineares Mistos. Embrapa Florestas, Colombo, Brazil.
27. Rodovalho, M. A., Coan, M. M. D., Scapim, C. A., Pinto, R. J. B. and Contreras-Soto, R. I. 2015. Comparison of HMRPGV, Lin and Binn's, and Annichiarico's Methods for Maize Hybrid Selection for High and Stable Yield. Maydica, 60: 1–7.
28. SAS INSTITUTE INC., 2003. Statistical Analysis System User's Guide. Version 9.1, Ed. Cary, SAS Institute, NC, USA.
29. Sayar, M. S., Anlarsal, A. E. and Başbag, M. 2013. Genotype–Environment Interactions and Stability Analysis for Dry-Matter Yield and Seed Yield in Hungarian Vetch (Vicia pannonica CRANTZ.). Turk. J. F. Crops., 18(2): 238-246.
30. Sayar, M. S. and Han, Y. 2015. Determination of Seed Yield and Yield Components of Grasspea (Lathyrus sativus L.) Lines and Evaluations Using GGE Biplot Analysis Method, Tarım Bilimleri Dergisi- J. Agri. Sci., 21(1): 78-92.
31. Sayar, M. S. and Han, Y. 2016. Forage Yield Performance of Forage Pea (Pisum sativum spp. arvense L.) Genotypes and Assessments Using GGE Biplot Analysis. J. Agr. Sci. Tech.., 18 (6):1621-1634.
32. Searle, S. R., Casella, G. and McCulloch, C. E. 1992. Variance Components. John Wiley and Sons, New York, USA.
33. Smith, A., Cullis, B. and Thompson, R. 2001. Analyzing Variety by Environment Data Using Multiplicative Mixed Models and Adjustments for Spatial Field Trend. Biometrics, 57: 1138–1147.
34. Thomason, W. E. and Phillips, S. B. 2006. Methods to Evaluate Wheat Cultivar Testing Environments and Improve Cultivar Selection Protocols. Field Crops Res., 99: 87–95.
35. Viana, J. M. S., Faria, V. R., Silva, F. F. and Resende, M. D. V. 2011. Best Linear Unbiased Prediction and Family Selection in Crop Species. Crop Sci., 51: 2371–2379.
36. Yang, R. C. and Baker. R. J. 1991. Genotype–Environment Interactions in Two Wheat Crosses. Crop Sci., 31: 83–87.