Predicting Spatial Distribution of Redroot Pigweed (Amaranthus retroflexus L.) using the RBF Neural Network Model

Authors
1 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Islamic Republic of Iran.
2 Associate Prof., Dept. of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
3 Assistant Prof., Dept. of Plant Protection, Faculty of Agriculture, Shahrood University of Technology. Shahrood, Iran
4 Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran.
Abstract
Estimating the spatial distribution of weeds for site-specific control is essential. Therefore, this research was conducted to predict and interpolate the spatial distribution of Amaranthus retroflexus L. populations using a Radial Basis Function Neural Network (RBF-NN) in two potato fields. Weed population data were collected from sampling 200 and 36 points, respectively, in two commercial potato fields in Jolge Rokh, of Torbat Heidarieh in Khorasan Razavi and Mojen of Shahroud in Semnan Provinces, Iran, in 2012. Some statistical tests, such as comparisons of the means, variance and statistical distribution, as well as linear regression, were used for the observed point sample data and the estimated weed seedling density surfaces to evaluate the neural network capability for predicting the spatial distribution of the weed. The results showed that the trained RBF-NN had high capability in the spatial prediction in points that were not sampled with 100% output, 0.999 coefficients, and an average error of less than 0.04 and 0.07 in the Mojen and Jolge Rokh Regions, respectively. Test results also showed that there was no significant difference between the statistical characteristics of actual data and the values predicted by the RBF-NN. According to the experimental results, the RBF-NN can be used as an alternative method to estimate the spatial changes function of annual weeds with random dispersion, such as Redroot Pigweed.

Keywords

Subjects


1. Barberi, P. 2002. Weed Management in Organic Agriculture: Are We Addressing the Right Issues. Weed Res., 42(3): 177-193.
2. Burks, T. F., Shearer, S. A., Heath, J. R. and Donohue, K. D. 2005. Evaluation of Neural-Network Classifiers for Weed Species Discrimination. Biosyst. Eng., 91: 293–304.
3. Costea, M., Weaver, S. E. and Tardif, F. J. 2004. Biology of Canadian Weeds 130. A. retroflexus L., A. powellii, and A. hybridus L. Can. J. Plant Sci., 84: 631–668.
4. Cowan, P., Weaver, S. E. and Swanton, C. J. 1998. Interference between Pigweed (Amaranthus spp.) Machine Veision Capablity and Weed Removal Effectiveness. Weed Res., 45: 388-405.
5. Das, A., Park, J. and Park, J. 2015. Estimation of Available Global Solar Radiation Using Sunshine Duration Over South Korea. J. Atmos. Terr. Phys., 134: 22-29.
6. Dille, J. A., Milner, M., Groeteke, J. J., Mortensen, D. A. and Williams, M. M. 2003. How Good is Your Weed Map? A Comparison of Spatial Interpolators. Weed Sci., 51: 44–55.
7. Dyrmann, M. and Christiansen, P. 2014. Automated Classification of Seedlings Using Computer Vision. Vision. Tech. Rep., Aarhus University, Aarhus.
8. Gholipoor, M., Rohani, A. and Torani, S. 2013. Optimization of Traits to Increasing Barley Grain Yield Using an Artificial Neural Network. Int. J. Plant Prod., 7: 1735-8043.
9. Goslee, C. S., Peters, D. P. C. and George-Beck, K. 2006. Spatial Prediction of Invasion Success across Heterogeneous Landscapes Using an Individual-Based Model. Biol. Invas., 8:193- 200.
10. Grundy, A. C., Onyango, C. M., Phelps, K. R., Reader, J., Marchant, J. A., Benjamin, L. R. and Mesd, M. 2005. Using a Competion Model to Quantify the Optimal Trade-Off between Barnyardgrass (Echinochloa crus-galli L.) and Soybean (Glycine max L.). Weed Sci., 46(5): 533-539.
11. Heijeting, S., Van Der Werf, W., Stein, A. and Kropff, M. 2007. Are Weed Map Stable in Location? Application of an Explicitly Two–Dimensional Methodology. Weed Res., 47: 381-395.
12. Irmak, A., Jones, J. W., Batchelor, W. D., Irmak, S., Boote, K. J. and Paz, J. O. 2006. Artificial Neural Network Model as a Data Analysis Tool in Precision Fielding. T. Am. Soc. Agric. Biol. Eng., 49: 2027-2037.
13. Jadhav, V., Chinnappa Reddy, B. and Gaddi, G. 2017. Application of ARIMA Model for Forecasting Agricultural Prices. J. Agr. Sci. Tech., 19(5): 981-992.
14. Jurado-Exposito, M., Lopez-Granados, F., Gonzalez-Andujar, J. L. and Garcia-Torres L. 2004. Spatial and Temporal Analysis of Convolvulus arvensis L. Populations over four Growing Seasons. Eur. J. Agron., 21: 287-296.
15. Kaul, M., Hill, R. L. and Walthall, C. 2005. Artificial Neural Networks for Corn and Soybean Yield Prediction. Agric. Syst., 85: 1-18.
16. Kiani, S. and Jafari, A. 2012. Crop Detection and Positioning in the Field Using Discriminant Analysis and Neural Networks based on Shape Features. J. Agr. Sci. Tech., 14(4): pp. 755-765.
17. Lamb, D. W. and Brown, R. B. 2001. Precision Agriculture: Remote-Sensing and Mapping of Weeds in Crops. J. Agric. Eng. Res., 78: 117-125.
18. Makarian, H., Rashed Mohassel, M. H., Bannayanand, M. and Nassiri, M. 2007. Soil Seed Bank and Seedling Populations of Hordeum murinum L. and Cardaria draba (L.) Desv. in Saffron Fields. Agric. Ecosyst. Environ., 120: 307- 312.
19. Makarian, H. and Rohani, A. 2012. Prediction of Spatial Distribution Pattern of Acroptilon repens L. Population Using Learning Vector Quantization Neural Network Model. Proceeding of the 4th Iranian Weed Science Congress, Ahvaz, Iran. (in Persian).
20. Mohammadi, J. 2010. Spatial variability of soil fertility, wheat yield and weed density in a One-hectare field in Shahr-e Kord. J. Agr. Sci. Tech., 4(1 and 2): 83-92.
21. Nordmeyer, H. 2006. Patchy Weed Distribution and Site-Specific Weed Control in Winter Cereals. Precis. Agric., 7: 219 -231.
22. Rafael, A. M., Randall, S. C., Michael, J. H. and John, B. J. 2001. Interference of Palmer Amaranth in Corn. Weed Sci., 49: 202-208.
23. Rohani, A., Abbaspour-Fard, M. H. and Abdolahpour, S. 2011. Prediction of Tractor Repair and Maintenance Costs Using Artificial Neural Network. Expert Syst. Appl., 38: 8999–9007.
24. Rohani, A., Taki, M. and Abdollhapour, F. 2017. A Novel Soft Computing Model (Gaussian Process Regression with K-Fold Cross Validation) for Daily and Monthly Solar Radiation Forecasting). Renew. Ener., 10.1016/j.renene.2017.08.061.
25. Shaukat, S. S. and Siddiqui, I. A. 2004. Spatial Pattern Analysis of Seed Bank and Its Relationship with Above-Ground Vegetation in an Arid Region. J. Arid Environ., 57: 311-327.
26. Streibig, J. C., Gottschau, I., Dennis, B., Haas, H. and Polgaard, P. 1984. Soil Properties Affecting Weed Distribution. 7th Int. Symp. Weed Biol. Ecol. Syst., 7: 147-154.
27. Tang, J. L., Chen, X. Q., Miao, R. H. and Wang, D. 2016. Weed Detection Using Image Processing under Different Illumination for Site-Specific Areas Spraying. Comput. Electron. Agr., 122: 103-11.
28. Torra, J., Royo-Esnal, A. and Chantre, G. R. 2016. Modeling Weed Emergence: Artificial Neural Networks versus Non-Linear Regression Procedures. International Weed Science Congress 2016, Keynote Speaker, At Prague.
29. Torrecilla, J. S., Otero, L. and Sanz, P. D. 2004. A Neural Network Approach for Thermal/Pressure Ffood Processing. Food Eng., 62: 89-95.
30. Vakil-Baghmisheh, M. T. and Pavešic, N. 2003. Premature Clustering Phenomenon and New Training Algorithms for LVQ. Pattern Recogn., 36: 1901-1921.
31. Vakil-Baghmisheh, M. T. 2002. Farsi Character Recognition Using Artificial Neural Networks. PhD. Thesis, Faculty of Electrical Engineering, University of Ljubljana.
32. Vangessel, M. J. and Renner, K. A. 1990. Redroot Pigweed (Amaranthus retroflexus L.) and Barnyardgrass (Echinochloa crus-galli L.) Interference in Potatoes (Solanum tuberosum L.). Weed Sci., 38(4-5): 338-343.
33. Wiles L. 2005. Sampling to Make Map for Site-Specific Weed Management. Weed Sci., 53: 228- 235.
34. Wyse-pester, D.Y., Wiles, L. J. and Westra P. 2002. Infestation and Spatial Dependence of Weed Seedling and Mature Weed Population in Corn. Weed Sci., 50: 54-63.
35. Zarifneshat, S., Rohani, A., Ghassemzadeh, H. R., Sadeghi, M., Ahmadi, E. and Zarifneshat M. 2012. Predictions of Apple Bruise Volume Using Artificial Neural Network. Comput. Electron. Agr., 82: 75–86.
36. Zhang, W. J., Zhong, X. Q. and Liu, H. G. 2008. Recognizing Spatial Distribution Patterns of Grassland Insects: Neural Network Approaches. Stoch. Environ. Res. Risk Assess., 22: 207–216.