Improving Growth and Yield of Wheat under Drought Stress via Application of SiO2 Nanoparticles

Authors
1 Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
2 Department of Chemistry, Collage of Sciences, Tarbiat Modares University, Tehran, Iran
Abstract
Silicon (Si) and its derivatives have beneficial effects on a wide variety of plant species, especially under both biotic and abiotic stresses. Yet, their effects on wheat (Triticum aestivum L.) plants under drought stress are not well known. Therefore, in order to evaluate the effects of SiO2 NanoParticles (NPs) under drought stress, wheat seeds were separately sown in pots. Then, the SiO2 NPs were added to them through soil and foliar application at three stages of plant growth. Results indicated that drought stress significantly decreased majority of the studied traits compared to the normal irrigation. Soil application of NPs, under drought stress, significantly increased leaf greenness (SPAD) and Relative Water Content (RWC) by 12.54 and 84.04%, respectively, compared to the control (NPs= 0 ppm). Moreover, under drought stress, wheat yield also increased by 25.35 and 17.81%, respectively, by foliar and soil application of NPs. Under the same irrigation regimes, soil application of NPs significantly increased plant height and biomass compared to the foliar application of NPs. Finally, our results highlight that usage of the SiO2 NPs, especially at rates of 30 and 60 ppm, can mitigate adverse effects of drought stress in wheat plants.

Keywords

Subjects


1. Abaaszadeh, P., Sharifi, A., Lebaschi, H. and Moghadasi, F. 2007. Effect of Drought Stress on Proline, Soluble Sugars, Chlorophyll and RWC Level in Melissa oggicinalis. Iran. J. Med. Plants Res., 23(4): 504-513.
2. Abdoli, M. and Saeidi, M. 2012. Using Different Indices for Selection of Resistant Wheat Cultivars to Postanthesis Water Deficit in the West of Iran. Ann. Bio. Res., 3: 1322-1333.
3. Abedi, T. and Pakniyat, H. 2010. Antioxidant Enzyme Changes in Response to Drought Stress in Ten Cultivars of Oilseed Rape (Brassica napus L.). Czech J. Genet. Plant Breed., 46(1): 27-34.
4. Adhikari, T., Kundu, S. and Rao, S. A. 2013. Impact of SiO2 and Mo Nano Particles on Seed Germination of Rice (Oryza Sativa L.). Int. J. Agri. Food Sci. Technol., 4(8): 809-816.
5. Ahmed, A. H., Harb, E. M., Higazy, M. A. and Morgan, S. 2008. Effect of Silicon and Boron Foliar Applications on Wheat Plants Grown under Saline Soil Conditions. Int. J. Agri. Res., 3: 1–26.
6. Anjum, S. A., Xie, X. Y., Wang, L., Saleem, M. F., Man, C. and Lei, W. 2011. Morphological, Physiological and Biochemical Responses of Plants to Drought Stress. Afr. J. Agri. Res., 6(9): 2026–2032.
7. Afshari-Behbahanizadeh, S., Akbari, G. A., Shahbazi, M., Alahdadi, I., Farahani, L., Tabatabaee, S. A. and Ganji, M. 2016. Qualitative and Physical Properties of Barley Grains under Terminal Drought Stress Conditions. J. Agr. Sci. Tech., 18: 1303-1317.
8. Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P. and Wiesner, M. R. 2009. Towards a Definition of Inorganic Nanoparticles from an Environmental, Health and Safety Perspective. Nature Nanotechnol., 4: 634–64.
9. Bates, L. S., Waldran, R. P. and Teare, I. D. 1973. Rapid Determination of Free Proline for Water Stress Studies. Plant Soil, 39: 205–208.
10. Ben Ahmed, C., Ben Rouina, B., SensoyM, S., Boukhris, M. and Ben Abdallah, F. 2009. Changes in Gas Exchange, Proline Accumulation and Antioxidative Enzyme Activities in Three Olive Cultivars under Contrasting Water Availability Regimes. Environ. Exp. Bot., 67: 345–352.
11. Boutraa, T. 2010. Improvement of Water Use Efficiency in Irrigated Agriculture: A Review. J. Agron., 9: 1–8.
12. Chen, W., Yao, X. Q., Cai, K. Z. and Chen, J. 2011. Silicon Alleviates Drought Stress of Rice Plants by Improving Plant Water Status, Photosynthesis and Mineral Nutrient Absorption. Biol. Trace Elem. Res., 142: 67–76.
13. Crusciol, C. A. C., Pulz, A. L., Lemos, L. B., Soratto, R. P. and Lima, G. P. P. 2009. Effects of Silicon and Drought Stress on Tuber Yield and Leaf Biochemical Characteristics in Potato. Crop Sci., 49: 949-954.
14. Eneji, A. E., Inanaga, S., Muranaka, S., Li, J., Hattori, T., An, P. and Tsuji, W. 2008. Growth and Nutrient Use in Four Grasses under Drought Stress as Mediated by Silicon Fertilizers. J. Plant Nutr., 31: 355–365.
15. Epstein, E. 2009. Silicon: Its Manifold Roles in Plants. Ann. Appl. Biol., 155: 155–160.
16. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S. M. A. 2009. Plant Drought Stress: Effects, Mechanisms and Management. Agron. Sustain. Dev., 29: 185–212.
17. Fofana, M., Cherif, M., Kone, B., Futakuchi, K. and Audebert, A. 2010. Effect of Water Deficit at Grain Repining Stage on Rice Grain Quality. J. Agric. Biotech. Sustain. Dev., 2: 100–107.
18. Giannopolitis, C. N. and Ries, S. K. 1977. Superoxide Dismutases. I. Occurrence in Higher Plants. Plant Physiol., 59: 309–14.
19. Gong, H. J., Chen, K. M., Chen, G. C., Wang, S. M. and Zhang, C. L. 2003. Effect of Silicon on Growth of Wheat under Drought. J. Plant Nutr., 26(5): 1055-1063.
20. Gong, H. J., Zhu, X. Y., Chen, K. M., Chen, G. C., Wang, S. M. and Zhang, C. L. 2005. Silicon Alleviates Oxidative Damage of Wheat Plants in Pots under Drought. Plant Sci., 169: 313–321.
21. Gooding, M. J., Ellis, R. H., Shewry, P. R. and Schofield, J. D. 2003. Effects of Restricted Water Availability and Increased Temperature on the Grain Filling, Drying and Quality of Winter Wheat. J. Cereal Sci., 37: 295–309.
22. Gubbins, E. J., Batty, L. C. and Lead, J. R. 2011. Phytotoxicity of Silver Nanoparticles to Lemna minor L. Environ. Pollut., 159: 1551–1559.
23. Gunes, A., Pilbeam, D. J., Inal, A. and Coban, S. 2008. Influence of Silicon on Sunflower Cultivars under Drought Stress. I. Drowth, Antioxidant Mechanisms, and Lipid Peroxidation. Commun. Soil Sci. Plant Anal., 39: 1885–1903.
24. Hasheminasab, H., Assad, M. T., Aliakbari, A. and Sahhafi, R. 2012. Influence of Drought Stress on Oxidative Damage and Antioxidant Defense Systems in Tolerant and Susceptible Wheat Genotypes. J. Agric. Sci., 4(8): 20-30.
25. Hattori, T., Inanaga, S., Tanimoto, E., Lux, A., Luxova, M. and Sugimoto, Y. 2003. Silicon Induced Changes in Viscoelastic Properties of Sorghum Root Cell Walls. Plant Cell Physiol., 44: 743–749.
26. Henriet, C., Draye, X., Oppitz, I., Swennen, R. and Delvaux, B. 2006. Effects, Distribution and Uptake of Silicon in Banana (Musa spp.) under Controlled Conditions. Plant Soil, 287: 359–374.
27. Jatav, G. K. and Nirmal, D. E. 2013. Application of Nanotechnology in Soil-Plant System. An. As. J. Soil Sci., 8(1): 176-184.
28. Jones, L. H. and Handereck, K. A. 1976. Silica in Soils and Plants. Agron. J., 19: 107-109.
29. Kala, S. and Godara, A. K. 2011. Effect of Moisture Stress on Leaf Total Proteins, Proline and Free Amino Acid Content in Commercial Cultivars of Ziziphus mauritiana. J. Sci. Res., 55: 65-69.
30. Kamangar, A. and Haddad, R. 2016. Effect of Water Stress and Sodium Silicate on Antioxidative Response in Different Grapevine (Vitis vinifera L.) Cultivars. J. Agr. Sci. Tech., 18: 1859-1870.
31. Kumar, R. R., Krishna, K. and Naik, G. R. 2011. Effect of Polyethylene-Glycol-Induced Water Stress on Physiological and Biochemical Responses in Pigeonpea (Cajanus cajan L. Millsp.). Recent Res. Sci. Technol., 3(1): 148-152.
32. Le, V. N., Rui, Y., Gui, X., Li, X., Liu, S. and Han, Y. 2014. Uptake, Transport, Distribution and Bio-Effects of SiO2 Nanoparticles in Bt-Transgenic Cotton. J. Nano Biotechnol., 5: 12:50.
33. Liang, Y., Sun, W., Zhu, Y. G. and Christie, P. 2007. Mechanisms of Silicon-Mediated Alleviation of Abiotic Stresses in Higher Plants: A Review. Environ. Poll., 147(2): 422-428.
34. Liang, Y. C. 1998. Effects of Si on Leaf Ultrastructure, Chlorophyll Content and Photosynthetic Activity in Barley under Salt Stress. Pedosphere, 8: 289–296.
35. Ma, J. F. 2009. Silicon Uptake and Translocation in Plants. In The Proceedings of the International Plant Nutrition Colloquium XVI, UC Davis, PP. 1-6.
36. Ma, J. F., Goto, S., Tamai, K. and Ichii, M. 2001. Role of Root Hairs and Lateral Roots in Silicon Uptake by Rice. Plant Physiol., 127: 1773–1780.
37. Ma, J. F. and Yamaji, N. 2006. Silicon Uptake and Accumulation in Higher Plants. Trends Plant Sci., 11(8): 392–397.
38. Mahajan, S. and Tuteja, N. 2005. Cold, Salinity and Drought Stresses: An Overview. Arch. Biochem. Biophys., 444: 139–158.
39. Mamnouie, E., Fotouhi Ghazvini, R., Esfahani, M. and Nakhoda, B. 2010. The Effects of Water Deficit on Crop Yield and the Physiological Characteristics of Barley (Hordeum vulgare L.) Varieties. J. Agr. Sci. Tech., 8: 211–219.
40. Mata, C. G. and Lamattina, L. 2001. Nitric Oxide Induces Stomatal Closure and Enhances the Adaptive Plant Responses against Drought Stress. Plant Physiol., 126: 1196-1204.
41. Monakhova, O. F. and Chernyadev, I. I. 2002. Protective Role of Kartolin-4 in Wheat Plants Exposed to Soil Drought. Appl. Biochem. Micro., 38: 373–380.
42. Moradshahi, A., Eskandari, S. B. and Kholdebarin, B. 2004. Some Physiological Responses of Canola (Brassica napus L.) to Water Deficit Stress under Laboratory Conditions. Iran. J. Sci. Technol. Trans A., 28(A1): 43-50.
43. Ommen., O. E., Donnelly, A., Vanhoutvin, S., Oijen, M. V. and Manderscheid, R. 1999. Chlorophyll Content of Spring Wheat Flag Leaves Grown under Elevated CO2 Concentrations and Other Environmental Stresses within the ESPACE-Wheat Project. Eur. J. Agron., 10: 197-203.
44. Parveen, N. and Ashraf, M. 2010. Role of Silicon in Mitigating the Adverse Effects of Salt Stress on Growth and Photosynthetic Attributes of Two Maize (Zea Mays L.) Cultivars Grown Hydroponically. Pak. J. Bot., 42(3): 1675–1684.
45. Reddy, A. R., Chaitanya, K. V. and Vivekanandanb, M. 2004. Drought-Induced Responses of Photosynthesis and Antioxidant Metabolism in Higher Plants. J. Plant Physiol., 161: 1189–1202.
46. Sacala, E. 2009. Role of Silicon in Plant Resistance to Water Stress. J. Elementol., 14(3): 619-630.
47. Sayed, M. A., Schumann, H., Pillen, K., Naz, A. A. and Leon, J. 2012. AB-QTL Analysis Reveals New Alleles Associated to Proline Accumulation and Leaf Wilting Under Drought Stress Conditions in Barley (Hordeum vulgare L.). BMC Genet., 13(1): 61.
48. Shallan, M. A., Hassan, H. M. M., Namich, A. A. M. and Ibrahim, A. A. 2016. Effects of TiO2 and SiO2 Nanoparticles on Cotton Plant under Drought Stress. Res. J. Pharm. Bio. Chem. Sci., 7(4): 1540-1551.
49. Sharifi Rad, J., Karimi, J., Mohsenzadeh, S., Sharifi Rad, M. and Moradgholi, J. 2014. Evaluating SiO2 Nanoparticles Effects on Developmental Characteristic and Photosynthetic Pigment Contents of Zeamays L. Bull. Environ. Pharm. Life Sci., 3(6): 194-201.
50. Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, A. E., Kobayashi, S., Kawamura, Y., Tanaka, K. and Inanaga, S. 2011. Effect of Silicon Application on Sorghum Root Responses to Water Stress. J. Plant Nutr., 34: 71–82.
51. Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V. and Kannan, N. 2012. Growth and Physiological Responses of Maize (Zea mays L.) to Porous Silica Nanoparticles in Soil. J. Nanopart. Res., 14: 1–14.
52. Taiz, L. and Zeiger, E. 2006. Plant Physiology. 4th Edition, Sinauer Associates Inc. Publishers, Massachusetts, 690 PP.
53. Van Bockhaven, J., De Vleesschauwer, D. and Hofte, M. 2013. Towards Establishing Broad-Spectrum Disease Resistance in Plants: Silicon Leads the Way. J. Exp. Bot., 64: 1281–1293.
54. Verhagen, J., Put, M., Zaal, F. and Van Keulen, H. 2004. Climate Change and Drought Risks for Agriculture. Environ. Poll., 39: 49–59.
55. Yazdanpanah, S., Baghizadeh, A. and Abbassi, F. 2011. The Interaction between Drought Stress and Salicylic and Ascorbic Acids on Some Biochemical Characteristics of Satureja hortensis. Afr. J. Agric. Res., 6(4): 798-807.
56. Yuvakkumar, R., Elango, V., Rajendran, V., Kannan, N. S. and Prabu, P. 2011. Influence of Nanosilica Powder on the Growth of Maize Crop (Zea mays L.). Int. J. Green Nanotechnol., 3: 180–190.
57. Zarafshar, M., Akbarinia, M., Askari, H., Hosseini, S. M., Rahaie, M. and Struve, D. 2015. Toxicity Assessment of SiO2 Nanoparticles to Pear Seedlings. Int. J. Nanosci. Nanotechnol., 11(1): 13-22.
58. Zhang, C., Moutinho-Pereira, J. M., Correia, C., Coutinho, J., Gonçalves, A., Guedes, A. and Gomes-Laranjo, J. 2013. Foliar Application of Silika Increases Chestnut (Castanea spp.) Growth and Ohotosynthesis, Simultaneously Increasing Susceptibility to Water Deficit. Plant Soil, 365: 211–225.
59. Zhao, J., Sun, H., Dai, H., Zhang, G. and Wu, F. 2010. Difference in Response to Drought Stress among Tibet Wild Barley Genotypes. Euphytica, 172(3): 395–403.