Effects of Soy Protein Isolate on Pasting and Gelling Properties of Corn and Wheat Starches

Authors
1 NSW Department of Primary Industries
2 Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, 7144165186, Islamic Republic of Iran.
Abstract
Starch and Soy Protein Isolate (SPI) have numerous applications in food products mostly as gelling and texturizing agents. The main purpose of this research was to investigate the pasting and gelling properties of the mixtures of starch and various levels of SPI (0, 5, 10, 15, 20 and 25%). To determine the effects of starch sources on the results, wheat and corn starches were tested in this study. It was found that with increasing the quantity of SPI, the viscosities obtained from Rapid Visco Analyser (RVA) including final, holding, and setback decreased while pasting temperature remained unchanged. Increasing the SPI concentrations enhanced the peak viscosity of the wheat starch-SPI samples, while it had opposite effects on corn starch-SPI samples. The colour of both starch-SPI gels became darker and more yellowish with increasing the SPI concentration. Although gel hardness increased during storage for 1 and 3 days at 4˚C, the addition of SPI reduced the hardness of the gels. The residual modulus of the Maxwell model from stress relaxation data showed that gels became softer and less elastic with increasing the SPI concentration. The corn starch-SPI gels exhibited darker color, higher firmness, cohesiveness, springiness, gumminess and chewiness compared to the wheat starch-SPI gels. The results may be useful to obtain the desired quality in food products containing starch and SPI.

Keywords

Subjects


1. AACC. 2000. Approved Methods of the American Association of Cereal Chemists. 10th Edition, The Association, St. Paul, MN.
2. Afshari-Jouybari, H. and Farahnaky, A. 2011. Evaluation of Photoshop Software Potential for Food Colorimetry. J. Food Eng., 106: 170–175.
3. Aguilera, J. M. and Rojas, E. 1996. Rheological, Thermal and Microstructural Properties of Whey Protein-Cassava Starch Gels. J. Food Sci., 61: 962-966.
4. AOAC. 2000. Official Methods of Analysis. 16th Edition, Association of Official Analytical Chemists, Washington, DC.
5. Azizi, R. and Farahnaky, A. 2013. Ultrasound Assisted Cold Gelation of Kappa Carrageenan Dispersions. Carbohydr. Polym., 95: 522–529.
6. Bertolini, A. C., Creamer, L. K., Eppink, M. and Boland, M. 2005. Some Rheological Properties of Sodium Caseinate-Starch Gels. J. Agric. Food Chem., 53: 2248-2254.
7. Bhattacharya, S. 2010. Stress Relaxation Behaviour of Moth Bean Flour Dough: Product Characteristics and Suitability of Model. J. Food Eng., 97: 539–546.
8. Brewer, M. S., Potter, S. M., Sprouls, G. and Reinhard, M. 1992. Effect of Soy Protein Isolate and Soy Fibre on Color, Physical and Sensory Characteristics of Baked Products. J. Food Qual., 15: 245–262.
9. Campus, M., Addis, M. F., Cappuccinelli, R., Porcu, M. C., Pretti, L., Tedde, V., Secchi, N., Stara, G. and Roggio, T. 2010. Stress Relaxation Behaviour and Structural Changes of Muscle Tissues from Gilthead Sea Bream (Sparus aurata L.) Following High Pressure Treatment. J. Food Eng., 96: 192–198.
10. Carvalho, C. W. P., Onwulata, C. I. and Tomasula, P. M. 2007. Rheological Properties of Starch and Whey Protein Isolate Gels. Food Sci. Technol. Int., 13: 207–216.
11. Chen, N., Zhao, M., Chassenieux, C. and Nicolai, T. 2016. Thermal Aggregation and Gelation of Soy Globulin at Neutral pH. Food Hydrocol., 61: 740-746.
12. Elgadir, M. A., Haque, M. J., Ferdosh, S., Mehrnoush, A., Karim, A. A., Noda, T. and Sarker, M. Z. I. 2012. Mixed Biopolymer Systems Based on Starch. Molec., 17: 584-597.
13. Herrero, A. M., Heia, K. and Careche, M. 2004. Stress Relaxation Test for Monitoring Post Mortem Changes of Ice-Stored Cod (Gadus morua L.). J. Food Sci., 69: 178–182.
14. Ingrid, A. M., Appelqvist, A. M. and Debet, R. M. 1997. Starch Biopolymer Interactions: A Review. Food Rev Int., 13: 163-224.
15. Jamilah, B., Mohamed, A., Abbas, K. A., Abdul Rahman, R., Karim, P. and Hashim, D. M. 2009. Protein-Starch Interaction and Their Effect on Thermal and Rheological Characteristics of a Food System: A review. J. Food Agric. Env., 7: 169-174.
16. Karim, A. A., Norziah, M. H. and Seow, C. C. 2000. Methods for the Study of Starch Retrogradation. Food Chem., 71: 9–36.
17. Kyaw, Z. Y., Yu, S. Y., Cheow, C. S., Dzulkifly, M. and Howell, N. K. 2001. Effect of Fish to Starch Ratio on Viscoelastic Properties and Microstructure of Fish Craker (Keropok”) Dough. Int. J. Food Sci. Technol., 36: 741-747.
18. Li, S., Wei, Y., Fang, Y., Zhang, W. and Zhang, B. 2014. DSC Study on the Thermal Properties of Soybean Protein Isolate/Corn Starch Mixture. J. Therm. Ann. Calorim., 115: 1633-1638.
19. Majzoobi, M., Farahnaky, A., Jamalian, J. and Radi, M. 2011. Effects of L-Cysteine on Some Characteristics of Wheat Starch. Food Chem., 124: 795–800.
20. Majzoobi, M., Beparva, P., Farahnaky, A. and Badii, F. 2014a. Physicochemical Properties of Cross-Linked Wheat Starch Affected by L-Ascorbic Acid. J. Agr. Sci. Tech., 16: 355-364.
21. Majzoobi, M., Ghiasi, F., Habibi, M., Hedayati, S. and Farahnaky, A. 2014b. Influence of Soy Protein Isolate on the Quality of Batter and Sponge Cake. J. Food Proc. Prese., 38: 1164-1170.
22. Maphalla, T. G. and Emmambux, M. N. 2016. Functionality of Maize, Wheat, Teff and Cassava Starches with Stearic Acid and Xanthan Gum. Carbohdr. Polym., 136: 970-978.
23. Mariani, P. D. S. C., Allganer, K., Oliveira, F. B., Cardoso, E. J. B. N. and Innocentini-Mei, L. H. 2009. Effect of Soy Protein Isolate on the Thermal, Mechanical and Morphological Properties of Poly (Ɛ-Caprolactone) and Corn Starch Blends. Polym. Test., 28: 824–829.
24. Messina, M. and Messina, V. 2010. The Role of Soy in Vegetarian Diets: Review. Nutr., 2: 855-888.
25. Mohamed, B. J. A., Abbas, K. A., Abdul Rahman, R., Karim, R. and Hashim, D. M. 2009. Protein-Starch Interaction and Their Effect on Thermal and Rheological Characteristics of a Food System: A Review. J. Food, Agric. Env., 7: 169 -174.
26. Morrison, W. R. and Laignelet, B. 1983. An Improved Colorimetric Procedure for Determining Apparent and Total Amylose in Cereal and Other Starches. J. Cereal Sci., 1: 9-20.
27. Peleg, M. and Pollak, M. 1982. The Problem of Equilibrium Conditions in Stress Relaxation Analyses of Solid Foods. J. Text. Stud., 13: 1–11.
28. Ravindra, P., Genovese, D. B., Forgrding, E. A. and Rao, M. A. 2004. Rheology of Heated Mixed Whey Protein Isolate/Cross-Linked Waxy Maize Starch Dispersions. Food Hydrocol., 18: 775-781.
29. Shao, S., Duncan, A. M., Yang, R., Marcone, M. F. Rajcan, I. and Tsao, R. 2009. Tracing Isoflavones: From Soybean to Soy Flour, Soy Protein Isolates to Functional Soy Bread. J. Func. Foods, 1: 119-127.
30. Shim, J. and Mulvaney, S. J. 2001. Effect of Heating Temperature, pH, Concentration and Starch/Whey Protein Ratio on the Viscoelastic Properties of Corn Starch/Whey Protein Mixed Gels. J. Sci. Food Agric., 81: 706-717.
31. Siegwein, A., Vodovotz, Y. and Fisher, E. L. 2011. Concentration of Soy Protein Isolate Affects Starch-Based Confectuons’ Texture, Sensory, and Storage Properties. J. Food Sci., 76: E422-E428.
32. Singh, N., Singh, J., Kaur, L., Sodhi, N. S. and Gill, B. S. 2003. Morphological, Thermal and Rheological Properties of Starches from Different Botanical Sources. Food Chem., 81: 219–231.
33. Sopade, P. A., Hardin, M., Fitzpatric, P., Desmee, H. and Halley, P. 2006. Macromolecular Interactions during Gelatinisation and Retrogradation in Starch-Whey Systems as Studied by Rapid Visco Analyser. Int. J. Food Eng., 2: 1-15.
34. Sun, N. X., Liang, Y., Yu, B., Tan, C. P. and Cui, B. 2016. Interaction of Starch and Casein. Food Hydrocol., 60: 572-579.
35. Takahashi, S., Kobayashi, R., Watanabe, T. and Kainuma, K. 1983. Effect of Addition of Soy Protein on Gelatinization and Retrogradation of Starch. Nippon Shokuhin Kogyo Gakkaishi, 30: 276-282.
36. Tang, J., Tung, M. and Zeng, A.Y. 1998. Characterization of Gellan Gels Using Stress Relaxation. J. Food Eng., 38: 279–295.
37. Tester, R. F., Karkalas, J. and Qi, X. 2004. Starch-Composition, Fine Structure and Architecture. J. Cereal Sci., 39: 151-165.
38. Vittadini, E. and Vodovotz, Y. 2003. Changes in the Physicochemical Properties of Wheat and Soy Containing Breads during Storage as Studied by Thermal Analyses. J. Food Sci., 68, 2022–2027.
39. Wu, M. C, Hamann, D. D. and Lanier, T. C. 2007. Rheological and Calorimetric Investigations of Starch-Protein Systems during Thermal Processing. J. Text. Stud., 16: 53-74.
40. Xiao, C. W. 2008. Health Effects of Soy Protein and Isoflavones on Humans. J. Nutr., 138: 1244S-1249S.
41. Yang, H., Irudayaraj, J., Otgonchimeg, S. and Walsh, M. 2004. Rheological Study of Starch and Dairy Ingredient-Based Food Systems. Food Chem., 86: 571-578.
42. Yu, S., Jiang, L. Z. and Kopparapu, N. K. 2015. Impact of Soybean Proteins Addition on Thermal and Retrogradation Properties of Nonwaxy Corn Starch. J. Food Proc. Pres., 39: 710-718.
43. Ziegler, G. R. and Foegeding, E. A. 1990. The Gelation of Proteins. Adv. Food Nutr. Res., 34: 203-298.