Studying Genetic Diversity in Zymoseptoria tritici, Causal Agent of Septoria Tritici Blotch, by Using ISSR and SSR Markers

Authors
1 Bu-Ali Sina University, Hamadan, Islamic Republic of Iran.
2 Seed and Plant Improvement Institute, Agricultural Research Education, and Extension Organization (AREEO), Karaj, Islamic Republic of Iran.
3 Department of Seed and Plant Improvement Research, Safiabad Agricultural Research, Education and Natural Resources Center, AREEO, Dezful, Islamic Republic of Iran.
Abstract
Seventy-five isolates of the fungus Zymoseptoria tritici, collected from seven wheat producing provinces in Iran, were studied using the molecular markers ISSR and SSR to determine its structure and genetic variations within its populations. Results indicated that the populations of the causal agent of this disease had a relatively high level of genetic diversity, with the total average genetic diversity (Ht) of 0.34 in the studied samples. When the genetic diversity was divided by the genetic diversity within and between the tested fungal populations, intra-population and inter-population genetic diversities were, respectively, 69 and 31%. Moreover, results showed that there was a strong gene flow between the studied provinces. The maximum genetic diversity among the studied provinces was observed in Ardebil and Khuzestan Provinces, and cluster analysis also revealed that the fungal populations of these two provinces had the greatest similarity with each other.

Keywords

Subjects


1. Abrinbana, M., Mozafiri, J., Shams-bakhsh, M. and Mehrabi, R. 2010. Genetic Structure of Mycosphaerella graminicola Populations in Iran. Plant Path., 59: 829-838.
2. Boeger, J. M., Chen, R. S. and McDonald, B. A. 1993.Gene Flow between Geographic Populations of Mycosphaerella graminicola (Anamorph Septoria tritici) Detected with Restriction Fragment Length Polymorphism Markers. Phytopathol., 83: 1148-1154.
3. Castillo, N., Cordo, C. and Simón, M. R. 2010. Molecular Variability among Isolates of Mycosphaerella graminicola, the Causal Agent of Septoria tritici Blotch, in Argentina. Phytoparasitica, 38: 379–389.
4. Consolo, V. F., Albani, C. M., Berón, C. M., Salerno, G. L. and Cordo, C. A. 2009. A Conventional PCR Technique to Detect Septoria tritici in Wheat Seeds. Aus. Plant Pathol., 38(3): 222-227.
5. Czembor, P. C. and Arseniuk, E. 1999. Study of Genetic Variability among Monopycnidial and Monopycnidiospore Isolates Derived from Single Pycnidia of Stagonospora ssp. and Septoria tritici with the Use of RAPD-PCR, MP-PCR and Rep-PCR Techniques. Int. J. Phytopathol., 147:539–546.
6. Doyle, J.J. and Doyle, J. L. 1990. Isolation of Plant DNA from Fresh Tissue. Focus, 12: 13–15.
7. Gurung, S., Goodwin, S. B., Kabbage, M., Bockus, W. W. and Adhikari, T. B. 2011. Genetic Differentiation at Microsatellite Loci among Populations of Mycosphaerella graminicola from California, Indiana, Kansas, and North Dakota. Phytopath., 101: 1251-1259.
8. Kabbage, M., Leslie, J. F., Zeller, K. A., Hulbert, S. H. and Bockus, W. W. 2008. Genetic Diversity of Mycosphaerella graminicola, the Causal Agent of Septoria tritici Blotch, in Kansas Winter Wheat. J. Agric. Food Environ. Sci., 2: 1-9.
9. Kema, G. H. J., Goodwin, S. B., Hamza, S., Verstappen, E. C. P., Cavaletto, J. R. and van der Lee, T. A. J. 2002. A Combined AFLP and RAPD Genetic Linkage Map of Mycosphaerella graminicola, the Septoria tritici Leaf Blotch Pathogen of Wheat. Genet., 161: 1497–1505.
10. Linde, C. C., Zhan, J. and McDonald, B. A .2002. Population Structure of Mycosphaerella graminicola: From Lesions to Continents. Phytopath, 92(9): 946-955.
11. McDonald, B. A., Pettway, R. E., Chen, R. S., Boeger, J. M. and Martinez, J. P. 1995. The Population Genetics of Septoria tritici (Teleomorph Mycosphaerella graminicola). Can. J. Bot., 73(S1): 292-301.
12. Nei, M. 1978. Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Individuals. Genet., 89: 583–590
13. Owen, P. G., Pei, M., Karp, A., Royle, D. J. and Edwards, K. J. 1998. Isolation and Characterization of Microsatellite Loci in the Wheat Ppathogen Mycosphaerella graminicola. Mol. Eco., 7(11): 1611-1612.
14. Peakall, R. O. D. and Smouse, P. E. 2006. GENALEX 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Mol. Eco. Res., 6(1): 288-295.
15. Pryor, B. M. and Gilbertson, R. L. 2000. Molecular Phylogenetic Relationships amongst Alternaria Species and Related Fungi Based upon Analysis of Nuclear ITS and mt SSU rDNA Sequences. Mycol., 104(11): 1312-1321.
16. Quaedvlieg, W., Kema, G. H. J., Groenewald, J. Z., Verkley, G. J. M., Seifbarghi, S., Razavi, M., Gohari, A. M., Mehrabi, R. and Crous, P. W. 2011. Zymoseptoria gen. Nov.: A New Genus to Accommodate Septoria-Like Species Occurring on Graminicolous Hosts. Persoonia: Mol. Phylogenet. Evol., 26: 57-69.
17. Razavi, M. and Hughes, G. R. 2004. Molecular Variability of Mycosphaerella graminicola as Detected by RAPD Markers. Int. J. Phytopathol., 152: 543-548.
18. Rohlf, F. J. 2010. NTSYSpc: Numerical Taxonomy and Multivariate Analysis System Version 2.21j. Exeter Software, Setauket, New York.
19. Schnieder, F., Koch, G., Jung, C. and Verreet, J. A. 2001. Genotypic Diversity of the Wheat Leaf Blotch Pathogen Mycosphaerella graminicola (Anamorph) Septoria tritici in Germany. Eur. Int. J. Phytopathol, 107: 285–290.
20. Talbot, N. J. 2015. Taming a Wild Beast: Developing Molecular Tools and New Methods to Understand the Biology of Zymoseptoria tritici. Fungal Genet. Biol., 79: 193–195.
21. Yeh, F. C., Yang, R. C. and Boyle, T. 1999. Popgene Version 1.31, Microsoft Window-Based Freeware for Population Genetic Analysis. Centre for International Forestry Research, University of Alberta.