1. Albacete, A. C., Martínez-Andújar, C., Martínez-Pérez, A., Thompson, A. J., Dodd, I. C. and Pérez-Alfocea, F. 2015. Unravelling Rootstock×Scion Interactions to Improve Food Security. J. Exper. Bot., 66: 2211–2226.
2. Al-Omran, A. M., Louki, I. I., Aly, A. A and Nadeem, M. E. 2013. Impact of Deficit Irrigation on Soil Salinity and Cucumber Yield under Greenhouse Condition in an Arid Environment. J. Agr. Sci. Tech., 15: 1247–1259.
3. Altunlu, H. and Gul, A. 2012. Increasing Drought Tolerance of Tomato Plants by Grafting. Acta Hort., 960: 183–190.
4. Association of Official Agricultural Chemists (AOAC). 2000. Official Methods of Analysis. 12th Edition, Washington, DC, USA.
5. Bates, L. S., Waldren, R. P. and Teari, D. 1973. Rapid Determination of Free Proline for Water Stress Studies. Plant Soil, 39: 205–207.
6. Chapman, H. D. and Pratt, P. F. 1978. Methods of Analysis for Soils, Plant and Water. Pub. 4034. Division of Agriculture Sciences, University of California, California.
7. Di Gioia, F., Serio, F., Buttaro D., Ayala, O. and Santamaria, P. 2010. Influence of Rootstock on Vegetative Growth, Fruit Yield and Quality in ‘Cuore di Bue’, an Heirloom Tomato. J. Hort. Sci. Biotech., 85: 477–482.
8. Djidonou, D., Zhao, X. E., Simonne, H., Koch K. E. and Erickson, J. E. 2013. Yield, Water-, and Nitrogen-Use Efficiency in Field-Grown, Grafted Tomatoes. HortSci., 48: 485–492.
9. Goto, R., de Miguel, A., Marsal, J. I., Gorbe, E. and A. Calatayud. 2013. Effect of Different Rootstocks on Growth, Chlorophyll A Fluorescence and Mineral Composition of Two Grafted Scions of Tomato. J. Plant Nut., 36: 825–835.
10. Jureková, Z., Németh-Molnár, K. and Paganová, V. 2011. Physiological Responses of Six Tomato (Lycopersicon esculentum Mill.) Cultivars to Water Stress. J. Hort. For., 3: 294–300.
11. Kakita, T., Abe, A. and Ikeda, T. 2015. Differences in Root Growth and Permeability in the Grafted Combinations of Dutch Tomato Cultivars (Starbuck and Maxifort) and Japanese Cultivars (Reiyo, Receive, and Magnet). Amer. J. Plant Sci., 6: 2640–2650.
12. Khah, E. M., Khava, E., Mavromatis, A., Chachalis, D. and Goulas, C. 2006. Effect of Grafting on Growth and Yield of Tomato (Lycopersicon esculentum Mill.) in Greenhouse and Open-Field. J. Appl. Hort., 8: 3–7.
13. Kumar, P., Edelstein, M., Cardarelli, M., Ferri, E. and Colla, G. 2015a. Grafting Affects Growth, Yield, Nutrient Uptake, and Partitioning under Cadmium Stress in Tomato. HortSci., 50: 1654–1661.
14. Kumar, P., Rana, S., Sharma, P. and Negi, V. 2015b. Vegetable Grafting: A Boon to Vegetable Growers to Combat Biotic and Abiotic Stresses. Hima. J. Agric. Res., 41: 1–5.
15. Kumar, P., Rouphael, Y., Cardarelli, M. and Colla, G. 2017. Vegetable Grafting as a Tool to Improve Drought Resistance and Water Use Efficiency. Front. Plant Sci., 8: 1130.
16. Lee, J. -M. 1994. Cultivation of Grafted Vegetables. I. Current Status, Grafting Methods and Benefits. HortSci., 29: 235–239.
17. Lee, J. -M., Kubota, C., Tsao, S. J., Bie, Z., Echevarriae, P. H., Morra, L. and Oda, M. 2010. Current Status of Vegetable Grafting: Diffusion, Grafting Techniques, Automation. Sci. Hort., 127: 93–105.
18. Lovelli, S., Perniola, M., Ferrara, A. and Di Tommaso, T. 2007. Yield Response Factor to Water (Ky) and Water Use Efficiency of Carthamus tinctorius L. and Solanum melongena L. Agric. Water Manage., 92: 73–80.
19. Lovelli, S., Potenza, G., Castronuovo, D., Perniola, M. and Candido, V. 2017. Yield, Quality and Water Use Efficiency of Processing Tomatoes Produced under Different Irrigation Regimes in Mediterranean Environment. Ital. J. Agron., 12: 795–802.
20. Mahadeen, A., Mohawesh, O., Al-Absi, K. and Al-Shareef, W. 2011. Effect of Irrigation Regimes on Water Use Efficiency and Tomato Yield (Lycopersicon esculentum Mill.) Grown in an Arid Environment. Arch. Agron. Soil Sci. J., 57: 105–114.
21. Nahar, K. and Gretzmacher, R. 2002. Effect of Water Stress on Nutrient Uptake, Yield and Quality of Tomato (Lycopersicon esculetum Mill.) under Subtropical Conditions. Bodenkultur, 53: 45–51.
22. Nahar, K. and Ullah, S. M. 2011. Effect of Water Stress on Moisture Content Distribution in Soil and Morphological Characters of Two Tomato (Lycopersicon esculentum Mill) Cultivars. J. Sci. Res., 3: 677–682.
23. Nawaz, M. A., Imtiaz, M., Kong, Q., Cheng, W., Ahmed, W., Huang, Y. and Bie, Z. 2016. Grafting: A Technique to Modify Ion Accumulation in Horticultural Crops. Front. Plant Sci., 7: 1457.
24. Nilsen, E. T., Freeman, J., Grene, R. and Tokuhisa, J. 2014. A Rootstock Provides Water Conservation for a Grafted Commercial Tomato (Solanum lycopersicum L.) Line in Response to Mild-Drought Conditions: A Focus on Vegetative Growth and Photosynthetic Parameters. PLoS ONE, 9: 1–22. DOI: 10.1371/ journal.
25. Oztekin, G., Giuffrida, F, Tuzel, Y. and Leonardi, C. 2009. Is the Vigour of Grafted Tomato Plants Related to Root Characteristics? J. Food, Agric. Environ., 7: 364–368.
26. Oztekin G. and Tuzel, Y. 2011. Salinity Response of Some Tomato Rootstocks at Seedling Stage. Afr. J. Agric. Res., 6: 4726–4735.
27. Patanè, C., La Rosa, S., Pellegrino, A., Sortino, O. and Saita, A. 2014. Water productivity and yield response factor in two cultivars of processing tomato as affected by deficit irrigation under semi-arid climate conditions. Acta Hort., 1038: 449–454.
28. Poudyala, D., Khatria, L. and Uptmoora, R. 2015. An Introgression of Solanum habrochaites in the Rootstock Improves Stomatal Regulation and Leaf Area Development of Grafted Tomatoes under Drought and Low Root-Zone-Temperatures. Adv. Crop Sci. Technol., 3: 1000175.
29. Sánchez-Rodríguez, E., Leyva, R., Constán-Aguilar, C., Romero, L. and Ruiz, J. M. 2012. Grafting under Water Stress in Tomato Cherry: Improving the Fruit Yield and Quality. Ann. Appl. Biol., 161: 302–312.
30. Sánchez-Rodríguez, E., Leyva, R., Constán-Aguilar, C., Romero, L. and Ruiz, J. M. 2014. How Does Grafting Affect the Ionome of Cherry Tomato Plants under Water Stress? Soil Sci. Plant Nut., 60: 145–155.
31. Schwarz, D., Rouphael, Y., Collac, G. and Venema, J. H. 2010. Grafting as a Tool to Improve Tolerance of Vegetables to Abiotic Stresses Thermal Stress, Water Stress and Organic Pollutants. Sci. Hort., 127: 162–171.
32. Semiz, G. D. and Suarez, D. L. 2015. Tomato Salt Tolerance: Impact of Grafting and Water Composition on Yield and Ion Relations. Turk. J. Agric. For., 39: 876–886.
33. Semiz, G. D. and Yurtseven, E. 2010. Salinity Distribution, Water Use Efficiency and Yield Response of Grafted and Ungrafted Tomato (Lycopersicon esculentum) under Furrow and Drip Irrigation with Moderately Saline Water in Central Anatolian Condition. GOÜ, Ziraat Fakültesi Dergisi. J. Fac. Agric., 27: 101–111.
34. Shamim, F., Farooq, K. and Waheed, A. 2014. Effect of Different Water Regimes on Biometric Traits of Some Tolerant and Sensitive Tomato Genotypes. J. Anim. Plant Sci., 24: 1178–1182.
35. Statistical Analysis System (SAS) Institute. 2008. Version 9.2. Cary, North Carolina, USA.
36. Steel, R. G. and Torrie, J. H. 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd Edition, McGraw Hill Book Co., New York.
37. Zhang, D. H., Xiong, Y., Huang, G., Xu, X. and Huang, Q. 2017. Effects of Water Stress on Processing Tomatoes Yield, Quality and Water Use Efficiency with Plastic Mulched Drip Irrigation in Sandy Soil of the Hetao Irrigation District. Agric. Water Manage., 179: 205–214.