Molecular Assessment of Genetic Diversity in Dromedaries and Bactrian Camel Using Microsatellite Markers

Authors
1 Department of Animal Science, Faculty of Agricultural and Natural Resource, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
2 Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran.
3 Department of Animal Science, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran, Islamic Republic of Iran.
Abstract
Dromedary and Bactrian camels are two species of camel in Iran that have ecological adaptation to cold and hot desert area, respectively. They play an important role in the life and food security of nomadic tribes. The present study was conducted to investigate genetic diversity of 180 Iranian camels using microsatellite markers. In a panel of 20 microsatellite markers, we observed 214 alleles with a mean number of 10.7 alleles per locus. All loci exhibited PIC values more than 0.7. The genetic differentiation values (FST) per locus was different from 0.01 to 0.039 with an average of 0.021 across all loci. The estimate of genetic differentiation level between all Iranian camel populations in this study was low (FST: 0.008-0.021). High gene flow between populations was also observed. Phylogenetic tree illustrated that the highest genetic distance was between Bactrian and dromedary camel from YaD. However, the results of the present microsatellite analyses showed close genetic relationship in the studied populations. All of the population-locus combinations showed significant deviations (P< 0.01) from Hardy-Weinberg equilibrium.

Keywords

Subjects


1. Ahmed, M. O., Salem, F. B., Bedhiaf, S., Rekik, B. and Djemali, M. 2010. Genetic Diversity in Tunisian Dromedary (Camelus dromedarius) Populations Using Microsatellite Markers. Livest. Sci., 132(1): 182-185.
2. Benbouza, H., Jacquemin. J. M., Baudoin, J. P. and Mergeai, G. 2006. Optimization of a Reliable, Fast, Cheap and Sensitive Silver Staining Method to Detect SSR Markers in Polyacrylamide Gels. Biotechnol. Agron. Soc., 10(2): 77-81.
3. Bos, D. H., Gopurenko, D., Williams, R. N. and DeWoody, J. A. 2008. Inferring Population History and Demography Using Microsatellites, Mitochondrial DNA, and Major Histocompatibility Complex (MHC) Genes. Evol., 62(6): 1458-1468.
4. Chuluunbat, B., Charruau, P., Silbermayr, K., Khorloojav, T. and Burger, P. 2014. Genetic Diversity and Population Structure of Mongolian Domestic Bactrian Camels (Camelus bactrianus). Anim. Genet., 45(4): 550-558.
5. Druml, T., Salajpal, K., Dikic, M., Urosevic, M., Grilz-Seger, G. and Baumung, R. 2012. Genetic Diversity, Population Structure and Subdivision of Local Balkan Pig Breeds in Austria, Croatia, Serbia and Bosnia-Herzegovina and Its Practical Value in Conservation Programs. Genet. Sel. Evol., 44(1): 1-9.
6. Eltanany, M. Sidahmed, O. E. and Distl, O. 2015. Assessment of Genetic Diversity and Differentiation of Two Major Camel Ecotypes (Camelus dromedarius) in Sudan Using Microsatellite Markers. Arch. Anim. Breed., 58(2): 269.
7. Falush, D., Hubisz, M., Stephens, M., Pritchard, J., Donnelly, P., Wen, W., Trienis, M. and Melsted, P. 2012. The Program Structure Software. http://pritch.bsd.uchicago.edu/structure.html.
8. FAO-STAT. 2014. Food and Agricultural Organization, Statistical Databases.
9. FAO. 2011. Molecular Genetic Characterization of Animal Genetic Resources. FAO Animal Production and Health Guidelines.
10. FAO, I. WFP. 2015. The State of Food Insecurity in the World 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress." Food and Agriculture Organization Publications, Rome.
11. Gautam, L., Mehta, S. C., Gahlot, R. S. and Gautam, K. 2004. Genetic Characterisation of Jaisalmeri Camel Using Microsatellite Markers. Ind. J. Biotechnol., 3: 457-479.
12. Guo, X. and Elston, R. 1999. Linkage Information Content of Polymorphic Genetic Markers. Hum. Hered., 49(2): 112-118.
13. Hampton, J. O., Spencer, P., Alpers, D. L., Twigg, L. E., Woolnough, A. P., Doust, J., Higgs, T. and Pluske, J. 2004. Molecular Techniques, Wildlife Management and the Importance of Genetic Population Structure and Dispersal: A Case Study with Feral Pigs. J. Appl. Ecol., 41(4): 735-743.
14. Iranian Council of Animal Care. 1995. Guide to the Care and Use of Experimental Animals. Vol. 1., Isfahan University of Technology, Isfahan, Iran.
15. Khademi, T. G. 2017. A Review of Genetic and Biological Status of Iranian Two-Humped Camels (Camelus bactrianus), a Valuable Endangered Species. J. Entomol. Zool. Stud., 5(4): 906-909.
16. Langella, O. 2011. Populations 1.2.32 – Population Genetic Software. CNRS UPR9034. http://bioinformatics.org/populations/.
17. Lehane, S. 2014. The Iranian Water Crisis. Strategic Analysis Paper, Future Directions International International Pty Ltd.: Perth, Australia, 11.
18. Mahmoud, A., Alshaikh, M., Aljumaah, R. and Mohammed, O. 2012. Genetic Variability of Camel (Camelus dromedarius) Populations in Saudi Arabia Based on Microsatellites Analysis. Afr. J. Biotechnol., 11(51): 11173-11180.
19. Maudet, C., Luikart, G. and Taberlet, P. 2002. Genetic Diversity and Assignment Tests among Seven French Cattle Breeds Based on Microsatellite DNA Analysis. J. Anim. Sci., 80(4): 942-950.
20. Mburu, D. N., Ochieng, J. W., Kuria, S. G., Jianlin, H., Kaufmann, B., Rege, J. E. O. and Hanotte, O. 2003. Genetic Diversity and Relationships of Indigenous Kenyan Camel (Camelus dromedarius) Populations: Implications for Their Classification. Anim. Genet., 34(1): 26-32.
21. Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, 512 PP.
22. Patel, A., Jisha, T., Upadhyay, D., Parikh, R., Upadhyay, M., Thaker, R., Das, S., Solanki, J. and Rank, D. 2015. Molecular Characterization of Camel Breeds of Gujarat Using Microsatellite Markers. Livest. Sci., 181: 85-88.
23. Peakall, R. and Smouse, P. E. 2012. GENALEX 6: Genetic Analysis in Excel: Population Genetic Software for Teaching and Research. Mol. Ecol. Resour., 6(1): 288-295.
24. Prasad, S., Ali, S. A., Banerjee, P., JoshiJ, Sharma, U. and Vijh, R. 2015. Population Genetic Structure of the Camel, Camelus dromedarius Based on Microsatellite Loci: Knock-on Effect for Conservation. Biotech. Res. Comm., 8(2): 153-160.
25. Putman, A. I. and Carbone, I. 2014. Challenges in Analysis and Interpretation of Microsatellite Data for Population Genetic Studies. Ecol. Evol., 4(22): 4399-4428.
26. Reed, D. H. and Frankham, R. 2003. Correlation between Fitness and Genetic Diversity. Conserv. Biol, 17(1): 230-237.
27. Shah-karami, S., Afraz, F., Mirhoseini, S. Z., Banabazi, M. H., Asadzadeh, N., Asadi, N., Hemmati, B., Qanbari, A. and Razavi, K. 2012. Genetic Diversity in Iranian Bactrian Camels (Camelus batrianus) Using, Microsatellite Markers. Modern Genet. J., 7: 249-258. (in Persian)
28. Sharma, R., Kishore, A., Mukesh, M., Ahlawat, S., Maitra, A., Pandey, A. K. and Tantia, M. S. 2015. Genetic Diversity and Relationship of Indian Cattle Inferred from Microsatellite and Mitochondrial DNA Markers. BMC Genet., 16(1): 1.
29. Spencer, P., Hampton, J. O., Pacioni, C., Kennedy, M. S., Saalfeld, K., Rose, K. and Woolnough, A. P. 2015. Genetic Relationships within Social Groups Influence the Application of the Judas Technique: A Case Study with Wild Dromedary Camels. J. Wildlife Manage., 79(1): 102-111.
30. Spencer, P., Wilson, K. and Tinson, A. 2010. Parentage Testing of Racing Camels (Camelus dromedarius) Using Microsatellite DNA Typing. Anim. Genet., 41(6): 662-665.
31. Spencer, P. and Woolnough, A. 2010. Assessment and Genetic Characterization of Australian Camels Using Microsatellite Polymorphisms. Livest. Sci., 129(1): 241-245.
32. Takezaki, N. and Nei, M. 1996. Genetic Distances and Reconstruction of Phylogenetic Trees from Microsatellite DNA. Genet., 144(1): 389-399.
33. Yagil, R., Zagorski, O. and Van Creveld, C. 1994. Science and Camels Milk Production (Some Keys for Nutrition and Marketing/Dromadaires et Chameaux, Animauxlaitiers). Actes du Colloque, 24-26 Octobre 1994, Nouakchott, Mauritania, CIRAD.