Assessment of Different Antibacterial Effects of Fe and Cu Nanoparticles on Xanthomonas campestris Growth and Expression of Its Pathogenic Gene hrpE

Authors
Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, P. O. Box: 578, Sari, Islamic Republic of Iran.
Abstract
Plant diseases cause severe damage to agricultural production and need to be effectively managed. The economic importance of the plant diseases and lack of effective control measures have led to many research in this field. Nanotechnology is one of the new techniques for disease control. The purpose of this study was to evaluate the antibacterial effects of copper and iron Nano­Particles (NPs) against a Xanthomonas campestris strain, as well as the study of these nanoparticles’ effects on expression of the pathogenic gene hrpE. The Zero-Valent Iron (ZVI) and copper nanoparticles were synthesized by chemical reduction method. Different concentration of nanoparticles of Fe and Cu were used in bacteria plate culture and the Minimum Inhibitory Concentrations (MIC) as well as Minimum Bactericidal Concentration (MBC) were determined using colony count and optical density methods. The effect of nanoparticles on pathogenic gene expression hrpE was studied using Real- Time PCR. Xanthomonas campestris strain exposed to zero-valent iron nanoparticles showed that the growth rate was increased with increase in the concentration of nano-iron. But, the growth percentage of bacteria Xanthomonas campestris was reduced with increase in the concentration of nano-copper. The expression levels of pathogenic gene expression hrpE were increased 9 and 3 fold for copper and iron, respectively. Copper and iron nanoparticles showed different effects on Xanthomonas growth.

Keywords

Subjects


1. Anderson, M. J. and Nameth, S. T. 1990. Development of a Polyclonal Antibody-Based Sero Diagnostic Assay for the Detection of Xanthomonas campestris pv. pelargonii in Geranium Plants. Phytopathol., 80(4): 357-360. doi.org/10.1094/PHYTO-01-14-0014-R.
2. Babushkina, I. V., Borodulin, V. B., Korshunoy, G. V. and Puchinjan, D. M. 2010. Comparative Study of Antibacterial Action of Iron and Copper Nanoparticles on Clinical S. aureus Strain. J. Med. Sci. Res., 6: 11-14.
3. Barzan, E., Mehrabian, S. and Irian, S. 2014. Antimicrobial and Genotoxicity Effects of Zero-Valent Iron Nanoparticles. Jundishapur J. Microbiol., 7(5): e10054. doi:10.5812/jjm.33933.
4. Behera, S. S., Patra, J. K., Pramanik, K., Panda, N. and Thatoi, H. 2012. Characterization and Evaluation of Antibacterial Activities of Chemically Synthesized Iron Oxide Nanoparticles. World J. Nano. Sci. Eng., 2(04): 196.
5. Benedict, A.A., Alvarez, A. M. and Pollard, L. W. 1990. Pathovar-Specific Antigens of Xanthomonas campestris pv. begoniae and X. campestris pv. Pelargonii Detected with Monoclonal Antibodies. Appl. Environ. Microbiol., 56(2): 572-574.
6. Bhattacharya, D. and Gupta, R. K. 2005. Nanotechnology and Potential of Microorganisms. Crit. Rev. Biotechnol., 25(4): 199 -204.
7. Boch, J. and Bonas, U. 2010. Xanthomonas AvrBs3 Family-Type III Effectors: Discovery and Function. Phytopathol., 48(1): 419. doi.org/10.1094/PHYTO-01-14-0014-R.
8. Borcherding, J., Baltrusaitis, J., Chen, H., Stebounova, L., Wu, C. M., Rubasinghege, G. and Comellas, A. P. 2014. Iron Oxide Nanoparticles Induce Pseudomonas aeruginosa Growth, Induce Biofilm Formation, and Inhibit Antimicrobial Peptide Function. Environ. Sci. Nano., 1(2): 123-132. DOI: 10.1039/C6EN00159A.
9. Boureau, T., Routtu, J., Roine, E., Taira, S. and Romantschuk, M. 2002. Localization of hrpA-Induced Pseudomonas syringae pv. tomato DC3000 in Infected Tomato Leaves. Mol. Plant Pathol., 3(6): 451-460.doi: 10.1111/mpp.12439.
10. Brar, S. K., Verma, M., Tyagi, R. D. and Surampalli, R. Y. 2010. Engineered Nanoparticles in Waste Water and Waste Water Sludge: Evidence and Impacts. Waste Manage., 30(3): 504-520.
11. Chaudhari, V. R., Haram, S. K., Kulshreshtha, S. K., Bellare, J. R. and Hassan, P. A. 2007. Micelle Assisted Morphological Evolution of Silver Nanoparticles. Colloids Surf. A., 301(1): 475-480.
12. Chiang, H. M., Xia, Q., Zou, X., Wang, C., Wang, S., Miller, B. J. and Fu, P. P. 2012. Nanoscale ZnO Induces Cytotoxicity and DNA Damage in Human Cell Lines and Rat Primary Neuronal Cells. J. Nano. Sci. Nanotechnol., 12(3): 2126-2135.doi:10.1166/jnn.2015.10348.
13. Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L. and Sabbatini, L. 2005. Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties. Chem. Matr., 17: 5255-5262.
14. Daughtrey, M. L. and Wick, R. L. 1995. Vascular Wilt Diseases. In: “Geraniums IV”, (Ed.): White, J. W. The Grower's Manual, Ball Publishing, Geneva, III: 237-242.
15. Daughtrey, M. L., Wick R. L. and Peterson, J. L. 2006. Compendium of Flowering Potted Plant Diseases. Am. Phytopathol. Soc. (APS), St Paul MN.
16. Fenselau, S., Balbo, I. and Bonas, U. 1992. Determinants of Pathogenicity in Xanthomonas campestris pv. vesicatoria Are Related to Proteins Involved in Secretion in Bacterial Pathogens of Animals. Mol. Plant. Microbe Interac., 5: 390-390. doi: 10.1094/MPMI-03-16-0056-R.
17. Fu, P. P., Xia, Q., Hwang, H.M., Ray, P. C. and Yu, H. 2014. Mechanisms of Nanotoxicity: Generation of Reactive Oxygen Species. J. Food Drug Anal., 22(1): 64-75. doi:10.1002/14651858.
18. Huynh, T. V., Dahlbeck, D. and Staskawicz, B. J. 1989. Bacterial Blight of Soybean: Regulation of a Pathogen Gene Determining Host Cultivar Specificity. Sci., 245: 1374-1377.
19. Jang, M. H., Lim, M. and Hwang, Y. S. 2014. Potential Environmental Implications of Nanoscale Zero-Valent Iron Nanoparticles for Environmental Remediation. Environ. Health Toxicol., 29: e2014022. Doi:10.5620/eht.e2014022.
20. Jeon, H. J., Yi, S. C. and Oh, S. G. 2003. Preparation and Antibacterial Effects of Ag–SiO2 Thin Films by Sol–Gel Method. Biomatr., 24(27): 4921-4928. doi: 10.3389/fmats.2016.00030.
21. Khati, P. 2017. Nanoparticles as Antimicrobial Agents against Medically Important Pathogens. Int. J. Appl. Pharm. Biol. Res., 2(2): 56-66.
22. Kim, J. H., Cho, H., Ryu, S. E. and Choi, M. U. 2000. Effects of Metal Ions on the Activity of Protein Tyrosine Phosphatase VHR: Highly Potent and Reversible Oxidative Inactivation by Cu2+ Ion. Arch. Biochem. Biophys., 382(1): 72-80. doi: 10.1016/j.
23. Kumar, S. A., Abyaneh, M. K., Gosavi, S. W., Kulkarni, S. K., Pasricha, R., Ahmad, A. and Khan, M. I. 2007. Nitrate Reductase-Mediated Synthesis of Silver Nanoparticles from AgNO3. Biotechnol. Let., 29(3): 439-445.
24. Liu, Q. M., Zhou, D. B., Yamamoto, Y., Ichino, R. and Okido, M. 2012. Preparation of Cu Nanoparticles with NaBH4 by Aqueous Reduction Method. Trans. Nonferrous Metals Soc. China, 22(1): 117-123.
25. Livak, K. J. and Schmittgen,T. D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4): 402-408.
26. Mahapatra, O., Bhagat, M., Gopalakrishnan, C. and Arunachalam, K. D. 2008. Ultrafine Dispersed CuO Nanoparticles and Their Antibacterial Activity. J. Exp. Nano. Sci., 3(3): 185-193. doi.org/10.1080/17458080.
27. Mahdy, S. A., Raheed, Q. J. and Kalaichelvan, P. T. 2012. Antimicrobial Activity of Zero-Valent Iron Nanoparticles. Int. J. Mod. Eng. Res., 2(1): 578-581.
28. Manulis, S., Valinsky, L., Lichter, A. and Gabriel, D. W. 1994. Sensitive and Specific Detection of Xanthomonas campestris pv. pelargonii with DNA Primers and Probes Identified by Random Amplified Polymorphic DNA Analysis. Appl. Environ. Microbiol., 60(11): 4094-4099. doi:10.1128/AEM.02023-16.
29. McPherson, G. M., Bradbury, J. F. and Preece, T. F. 1977. Descriptions of Pathogenic Fungi and Bacteria. CMI No 560, 2 PP.
30. Moorman, G. W. 2016. Bacterial Blight of Geraniums, Penn State Extension. Penn State College of Agricultural Sciences. http://extension.psu.edu/pests/plant-diseases/all-fact-sheets/bacterial-blight-of-geraniums.
31. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T. and Yacaman,M. J. 2005. The Bactericidal Effect of Silver nanoparticles. J. Nanotechnol., 16(10): 2346.
32. Pal, A., Shah, S. and Devi, S. 2007. Synthesis of Au, Ag and Au–Ag Alloy Nanoparticles in Aqueous Polymer Solution. J. Colloids Surf. A., 302(1): 51-57.
33. Raffi, M., Mehrwan, S., Bhatti, T. M., Akhter, J. I., Hameed, A., Yawar, W. and Hasan,M. M. 2010. Investigations into the Antibacterial Behavior of Copper Nanoparticles against Escherichia coli. Ann. Microbiol., 60(1): 75-80.
34. Ren, G., Cheng, E. W. C., Vargas-Reus, M. A., Reip, P. and Allakar, R. P. 2009. Characterization of Copper Oxide Nanoparticles for Antimicrobial Applications. Int. J. Antimicrob. Age., 33: 587-590.
35. Ruparelia, J. P., Chatterjee, A. K., Duttagupta, S. P. and Mukherji, S. 2008. Strain Specificity in Antimicrobial Activity of Silver and Copper Nanoparticles. Acta Biomater., 4(3): 707-716.doi: 10.1016/j.
36. Salmeron, J. M. and Staskawicz, B. J. 1993. Molecular Characterization and hrp Dependence of the Avirulence Gene avrPro from Pseudomonas syringae pv. tomato. Mol. Gen. Genet., 239(1-2): 6-16.
37. Sayilkan, F., Asilturka, M. and Kirazb, N. 2009. Photocatalytic Antibacterial Performance of sn4+ Doped Tio2 Thin Films on Glass Substrate. J. Hazard Matr., 162: 1309-1316.
38. Selvarani, M. and Prema, P. 2013. Evaluation of Antibacterial Efficacy of Chemically Synthesized Copper and Zerovalent Iron Nanoparticles. Asian J. Pharm. Clin. Res., 6(3):222-227.
39. Stohs, S. J. and Bagchi, D. 1995. Oxidative Mechanisms in the Toxicity of Metal Ions. Free Radic. Biol. Med., 18(2): 321-336. doi: 10.1016/j.
40. Tran, N., Mir, A., Mallik, D., Sinha, A., Nayar, S. and Webster, T. J. 2010. Bactericidal Effect of Iron Oxide Nanoparticles on Staphylococcus aureus. Int. J. Nanomed., 5: 277-283. doi: 10.2147/IJN.S106299.
41. Vauterin, L., Hoste, B., Kersters, K. and Swings, J. 1995. Reclassification of Xanthomonas. Int. J. Syst. Bacteriol., 45(3): 472-489.
42. Weber, E. and Koebnik, R. 2006. Positive Selection of the Hrp pilin HrpE of the Plant Pathogen Xanthomonas. J. Bacteriol., 188(4): 1405-1410. doi:10.1128/JB.00384-16.
43. Weber, E., Ojanen-Reuhs,T., Huguet, E., Hause, G., Romantschuk, M., Korhonen, T. K. and Koebnik, R. 2005. The Type III-Dependent Hrp Pilus Is Required for Productive Interaction of Xanthomonas campestris pv. vesicatoria with Pepper Host Plants. J. Bacteriol., 187(7): 2458-2468. doi:10.1128/JB.00384-16.
44. Wei, Z. M., Laby, R. J., Zumoff, C. H., Bauer, D. W., He, S. Y., Collmer, H. and Beer, S. V. 1992. Harpin, Elicitor of the Hyper Sensitive Response Produced by the Plant Pathogen Erwinia amylovora. Sci. (Washington), 257: 85-88.
45. Xiao, Y., Lu, Y., Heu, S. and Hutcheson, S. W. 1992. Organization and Environmental Regulation of the Pseudomonas syringae pv. syringae 61 hrp Cluster. J. Bacteriol., 174(6): 1734-1741. doi:10.1128/JB.00384-16.
46. Xie, Y., He, Y., Irwin, P.L. and Jin, T. 2011. Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles Against Compylobacter jejuni. Appl. Environm. Microbiol., 77(7): 2325-2331
47. Yin, J. J., Lao, F., Fu, P. P., Wamer, W. G., Zhao, Y., Wang, P. C. and Liang, X. J. 2009. The Scavenging of Reactive Oxygen Species and the Potential for Cell Protection by Functionalized Fullerene Materials. Biomatr., 30(4): 611-6.doi: 10.3389/fmats.2016.00030.