Spatial Expression of Genes in Inulin Biosynthesis Pathway in Wild and Root Type Chicory

Authors
1 Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran.
2 Department of Plant Breeding, College of Agricultural, University of Kurdistan, Sanandaj, Islamic Republic of Iran.
Abstract
Chicory (Cichorium intybus L.) is a typical Mediterranean plant distributed throughout the world and has different commercial uses such as salad, forage, inulin production, and coffee substitute. Health promoting characteristics of inulin as a prebiotic compound led to its biosynthesis pathway discovery. Two enzymes, namely, 1-SST and 1-FFT, are involved in inulin biosynthesis during normal phase. By cold nights or other factors, 1-FEHs enzymes degrade inulin to fructosyl units. To compare the strength of function of these genes in a wild type genotype with root type cultivar (Orchies) of chicory at three stages, i.e. 60, 90, and 120 days after seed planting, relative expression of those genes along with their corresponding metabolites were assessed using RT-qPCR and HPLC. Expression results showed that, unlike Orchies cultivar, relative expression of 1-SST in wild type genotype was ascending, relative expression of 1-FFT was very low and constant and there were high levels of relative expression of 1-FEH I gene during growing season due to flowering initiation. Also, glucose and fructose concentrations were upward, as result of 1-SST and 1-FEH I enzymes activity in wild type genotype, respectively. Degree of Polymerization (DP) of produced inulin had almost no increase due to low function of 1-FFT enzyme in the wild type genotype (DP< 5), but Orchies cultivar produced inulin with DP> 10 as expression of 1-SST decreased during growing season. So, it is possible to make inulin pathway in root type chicory cultivars more efficient by expanding and overexpressing 1-SST function using such wild resources through backcross breeding or biotechnology methods.

Keywords

Subjects


1. Améziane, R., Deléens, E., Noctor, G., Morot-Gaudry, J. F. and Limami, M. A. 1997. Stage of Development Is an Important Determinant in the Effect of Nitrate on Photoassimilate (C13) Partitioning in Chicory (Cichorium intybus L.). J. Exp. Bot., 48: 25–33
2. Baert, J. R. A. 1997. The Effect of Sowing and Harvest Date and Cultivar on Inulin Yield and Composition of Chicory (Cichorium intybus L) Roots. Ind. Crop. Prod., 6: 195-199.
3. Baert, J. R. A. and van Bockstaele, E. J. 1993. Cultivation and Breeding of Root Chicory for Inulin Production. Ind. Crop. Prod., 1: 229–234.
4. De Roover, J., Vandenbranden, K., Van Laere, A. and Van den Ende, W. 2000. Drought Induces Fructan Synthesis and 1-SST (Sucrose: Sucrose Fructosyltransferase) in Roots and Leaves of Chicory Seedlings (Cichorium intybus L.). Planta, 210: 808-814.
5. Frese, L., Dambroth, M. and Bramm, A. 1991. Breeding Potential of Root Chicory (Cichoriumintybus L. var. Sativum). Plant Breed., 106: 107-113.
6. Gachon, C., Mingam, A. and Charrier, B. 2004. Real-Time PCR: What Relevance to Plant Studies? J. Exp. Bot., 55: 1445-1454.
7. Haraguchi, K. 2011.Two Types of Inulin Fructotransferases. Matr., 4: 1543-1547.
8. Hellwege, E. M., Czapla, S., Jahnke, A., Willmitzer, L., and Heyer, A. G. 2000. Transgenic Potato (Solanum tuberosum) Tubers Synthesize the Full Spectrum of Inulin Molecules Naturally Occurring in Globe Artichoke (Cynara scolymus) Roots. Proceedings of the National Academy of Sciences of USA. 97: 8699–8704.
9. Khosravi, A., Boldaji, F., Dastar, B. and Karimi Torshizi, M. A. 2017. Symbiosis between Enterococcus faecium DSM 3530 and Fructan Compounds of Different Degree of Polymerization: A Preliminary In Vitro Assay in a Condition Simulated Chicken Caecum. J. Agr. Sci. Tech., 19: 603-611.
10. Kusaba, M. 2004. RNA Interference in Crop Plants. Curr. Opin. Biotechnol., 15: 139-143.
11. Lucchin, M., Varotto, S., Barcaccia, G. and Parrini, P. 2008. Vegetables 1. “Handbook of Plant Breeding Series”, (Eds.): Prohes, J. and Nuez, F. Springer, PP. 3-48.
12. Maroufi, A., Karimi M. and Mehdikhanlou, Kh. 2016. Overexpression of Sucrose: Sucrose 1-Fructosyltransferase Gene in Chicory to Produce High DP Inulin. Second International Genetics Congress, 21-23 May. Tehran, Iran.
13. Maroufi, A., Van Bockstaele, E. and De Loose, M. 2012. Differential Expression of Fructan 1-Exohydrolase Genes Involved in Inulin Biodegradation in Chicory (Cichorium intybus) Cultivars. Aust. J. Crop Sci., 6: 1362-1368.
14. Maroufi, A., Van Bockstaele, E. and De Loose,M. 2010. Validation of Reference Genes for Gene Expression Analysis in Chicory (Cichorium intybus) Using Quantitative Real-Time PCR. BMC Mol. Biol., 11: 15.
15. Michiels, A., Van Laere, A., Van den Ende, W., and Tucker, M. 2004. Expression Analysis of a Chicory Fructan 1-exohydrolase Gene Reveals Complex Regulation by Cold. J. Exp. Bot., 55: 1325-1333.
16. Pfaffl, M. W., Vandesompele, J., and Kubista, M. 2009. Real-time PCR Technology. In Data Analysis Software, Logan, J., Edwards, K., and Saunders, N., eds (Caister Academic Press, Norwich), pp. 65–83.
17. Pilon-Smits, E. A. H.,Ebskamp, M. J. M., Paul, M. J., Jeuken, M. J. W., Weisbeek, P. J. , and Smeekens, S. C. M. 1995. Improved Performance of Transgenic Fructan-accumulating Tobacco under Drought Stress. Plant Physiol. 107:125–130
18. Roberfroid, M. B. 2005. Introducing Inulin-Type Fructans. Br. J. Nutr., 93: 13-25.
19. Roberfroid, M. B. 2007. Inulin-Type Fructans: Functional Food Ingredients. J. Nutr., 137: 2493S–2502S.
20. SAS Institute. 1992. SAS/STAT Users Guide. SAS Institute Inc, Cary.
21. Shoorideh, H., Peyghambari, S. A., Omidi, M., Naghavi, M. R. and Maroufi, A. 2016. Assessing Potential of Iranian Chicory Genotypes for Industrial Application. Int. J. Horti. Sci. Technol., 3: 59-68.
22. UPOV. 2003. Comments on Test Guidelines for Industrial Chicory. International :::::union::::: for the Protection of New Varieties of Plants, TG/172/3, Netherlands, 4 PP.
23. Van Arkel, J., Vergauwen, R., Sevenier, R., Hakkert, J. C., Van Laere, A. and Bouwmeester, H. J. 2012. Sink Filling, Inulin Metabolizing Enzymes and Carbohydrate Status in Field Grown Chicory (Cichorium intybus L.). J. Plant Physiol., 169: 1520–1529.
24. Van den Ende, W, Michiels, A., De Roover, J., Van Wonterghem, D., Clerens, S. and Van Laere, A. 2001. Defoliation Induces 1-FEH II (Fructan 1-Exohydrolase II) in Witloof Chicory Roots. Cloning and Purification of Two Isoforms (1-FEH IIa and 1-FEH IIb). Plant Physiol., 126: 1186-1195.
25. Van den Ende, W. and Van Laere, A. 1996c. Fructan Synthesizing and Degrading Activities in Chicory Roots (Cichorium intybus L.) during Growth, Storage and Forcing. J. Plant Physiol., 149: 43-50.
26. Van den Ende, W., De Roover, J. and Van Laere, A. 1996a. In Vitro Synthesis of Fructofuranosyl-Only Oligosaccharides from Inulin and Fructose by Purified Chicory Root Fructan: Fructan Fructosyl Transferase". Physiol. Plant., 97: 346–52.
27. Van den Ende, W., Michiels, A., De Roover, J. and Van Laere, A. 2002. Fructan Biosynthetic and Breakdown Enzymes in Dicots Evolved from Different Invertases Expression of Fructan Genes throughout Chicory Development. Sci. World J., 2: 1281–1295.
28. Van den Ende, W., Mintiens, A., Speleers, H., Onuoha, A. A. and Van Laere, A. 1996b. The Metabolism of Fructans in Roots of Cichorium intybus L. during Growth, Storage and Forcing. New Phytol., 132: 555–563.
29. Verhaest, M., Van den Ende, W., Roy, K.L., De Ranter, C. J., Van Laere, A. and Anja, R. 2005. X-Ray Diffraction Structure of a Plant Glycosyl Hydrolase Family 32 Protein: Fructan 1-Exohydrolase IIa of Cichorium intybus. Plant J., 41: 400–411.
30. Wang, T. and Brown, M. J. 1999. mRNA Quantification by Real Time TaqMan Poly-merase Chain Reaction: Validation and Compar‌ison with RNase Protection. Anal. Biochem. 269:198-201.