1. Abino, A. C., Kim, S. Y., Jang, M. N., Lee, Y. J. and Chung, J. S. 2015. Assessing Land Use and Land Cover of the Marikina Sub-Watershed, Philippines. For. Sci. Technol., doi:10.1080/21580103.2014.957353
2. Adhikari, S., Southworth, J. and Nagendra, H. 2014. Understanding Forest Loss and Recovery: A Spatiotemporal Analysis of Land Change in and around Bannerghatta National Park, India. J. Land Use Sci., 10:1-23. doi:10.1080/1747423X.2014.920425
3. Akinyemi, F. O., Pontius Jr, R. G. and Braimoh, A. K. 2017. Land Change Dynamics: Insights from Intensity Analysis Applied to an African Emerging City. J. Spatial Sci., 62: 69-83. doi:10.1080/14498596.2016.1196624
4. Al-Saady, Y., Merkel, B., Al-Tawash, B. and Al-Suhail, Q. 2015. Land Use and Land Cover (LULC) Mapping and Change Detection in the Little Zab River Basin (LZRB), Kurdistan Region, NE Iraq and NW Iran. FOG - Freiberg Online GeoSci., 43: 1-32.
5. Aldwaik, S. Z. and Pontius Jr, R. G. 2012. Intensity Analysis to Unify Measurements of Size and Stationarity of Land Changes by Interval, Category, and Transition. Landscape Urban Plan., 106: 103-114. doi:http://dx.doi.org/10.1016/j.landurbplan.2012.02.010
6. Aldwaik, S. and Pontius Jr, R. G. 2013. Map Errors that Could Account for Deviations from a Uniform Intensity of Land Change. Int. J. Geogr. Inf. Sci., 27: 1717-1739. doi:10.1080/13658816.2013.787618
7. Amini Parsa, V. and Salehi, E. 2016. Spatio-Temporal Analysis and Simulation Pattern of Land Use/Cover Changes, Case Study: Naghadeh, Iran. J. Urban Manage., 5: 43-51. doi:http://dx.doi.org/10.1016/j.jum.2016.11.001
8. Berakhi, R. O., Oyana, T. J. and Adu-Prah, S. 2014. Land Use and Land Cover Change and its Implications in Kagera River Basin, East Africa. Afr. Geogr. Rev., VOL?? 1-23. doi:10.1080/19376812.2014.912140
9. Chapin Iii, F.S et al. Please provide the complete list of authors. 2000. Consequences of Changing Biodiversity. Nature, 405: 234-242
10. Delbari, M., Afrasiab, P. and Jahani, S. 2013. Spatial Interpolation of Monthly and Annual Rainfall in Northeast of Iran. Meteorol. Atmos. Phys., 122: 103-113. doi:10.1007/s00703-013-0273-5
11. Dingle Robertson, L. and King, D. J. 2011. Comparison of Pixel- and Object-Based Classification in Land Cover Change Mapping. Int. J. Remote Sens., 32: 1505-1529. doi:10.1080/01431160903571791
12. Enaruvbe, G. O. and Pontius Jr, R. G. 2015. Influence of Classification Errors on Intensity Analysis of Land Changes in Southern Nigeria. Int. J. Remote Sens., 36: 244-261.
13. Fathian, F., Dehghan, Z. and Eslamian, S. 2016. Evaluating the Impact of Changes in Land Cover and Climate Variability on Streamflow Trends (Case Sstudy: Eastern subbasins of Lake Urmia, Iran). Int. J. Hydrol. Sci. Technol., 6: 1-26. doi:10.1504/IJHST.2016.073881
14. Huang, J., Pontius Jr, R. G., Li, Q. and Zhang, Y. 2012. Use of Intensity Analysis to Link Patterns with Processes of Land Change from 1986 to 2007 in a Coastal Watershed of Southeast China. Appl. Geogr., 34: 371-384. doi:http://dx.doi.org/10.1016/j.apgeog.2012.01.001
15. Langroodi, S. H. M., Masoum, M. G., Nasiri, H. and Javi, S. T. 2015. Spatial and Temporal Variability Analysis of Groundwater Quantity to Land-Use/Land-Cover Change in the Khanmirza Agricultural Plain in Iran. Arab. J. GeoSci., 8: 8385-8397. doi:10.1007/s12517-015-1786-7
16. Lu, D. S., Li, G. Y., Kuang, W. H. and Moran, E. 2014. Methods to Extract Impervious Surface Areas from Satellite Images. Int. J. Digit. Earth, 7: 93-112.
17. Madugundu, R., Al-Gaadi, K. A., Patil, V. C. and Tola, E. 2014. Detection of Land Use and Land Cover Changes in Dirab Region of Saudi Arabia Using Remotely Sensed Imageries. Am. J. Environ. Sci., 10: 8-18. doi:10.3844/ajessp.2014.8.18
18. Mallinis, G., Koutsias, N. and Arianoutsou, M. 2014. Monitoring Land Use/Land Cover Transformations from 1945 to 2007 in Two Peri-Urban Mountainous Areas of Athens Metropolitan Area, Greece. Sci. Total Environ., 490: 262-278. doi:http://dx.doi.org/10.1016/j.scitotenv.2014.04.129
19. Manandhar. R., Odeh, Inakwu O. A. Odeh, Pontius Jr, R. G. 2010. Analysis of Twenty Years of Categorical Land Transitions in the Lower Hunter of New South Wales, Australia. Agri. Ecosyst. Environ., 135: 336-346. doi:http://dx.doi.org/10.1016/j.agee.2009.10.016
20. Minaei. M. and Irannezhad, M. 2016. Spatio-Temporal Trend Analysis of Precipitation, Temperature, and River Discharge in the Northeast of Iran in Recent Decades. Theor. Appl. Climatol., doi:10.1007/s00704-016-1963-y
21. Minaei, M. and Kainz, W. 2016. Watershed Land Cover/Land Use Mapping Using Remote Sensing and Data Mining in Gorganrood, Iran. ISPRS Int. J. Geo-Info., 5: 57
22. Minaei, M., Shafizadeh-Moghadam, H. and Tayyebi, A. 2018. Spatiotemporal Nexus between the Pattern of Land Degradation and Land Cover Dynamics in Iran. Land Degradation and Development. http://dx.doi.org/doi:10.1002/ldr.3007.
23. Mirzaei, J., Mohamadi, A., Heidarizadi, Z., Noorolahi, H. and Omidipour, R. 2015. Assessment of Land Cover Changes Using RS and GIS (Case Study: Zagros Forests, Iran). J. Matr. Environ. Sci., 6: 2565-2572
24. Nadoushan, M. A., Abari, M. F., Radnezhad, H. and Sadeghi, M. 2017. Monitoring Land Use/Cover Changes Using Remotely Sensed Imagery in Isfahan, Iran. Indian J.Geo-Marine Sci., 46: 538-544
25. Pontius Jr, R. G., Shusas, E. and McEachern, M. 2004. Detecting Important Categorical Land Changes while Accounting for Persistence Agriculture. Ecosyst. Environ., 101: 251-268. doi:http://dx.doi.org/10.1016/j.agee.2003.09.008
26. Pontius, R., Gao, Y., Giner, N., Kohyama, T., Osaki, M. and Hirose, K. 2013. Design and Interpretation of Intensity Analysis Illustrated by Land Change in Central Kalimantan, Indonesia. Land, 2: 351-369.
27. Saeedimoghaddam, M., Keyanpour-Rad, M., Shafizadeh-Moghadam, H., Valavi, R., Mirbagheri, B., Shakiba, A. and Matkan, A. 2017. A Probabilistic Space-Time Prism to Explore Changes in White Stork Habitat Use in Iran. Ecol. Indic., 78: 156-166. doi:http://dx.doi.org/10.1016/j.ecolind.2017.03.019
28. Shafizadeh-Moghadam, H., Asghari, A., Tayyebi, A. and Taleai, M. 2017a. Coupling Machine Learning, Tree-Based and Statistical Models with Cellular Automata to Simulate Urban Growth Computers. Environ. Urban Syst., 64: 297-308. doi:http://dx.doi.org/10.1016/j.compenvurbsys.2017.04.002
29. Shafizadeh-Moghadam, H., Tayyebi, A., Ahmadlou, M., Delavar, M. R. and Hasanlou, M. 2017b. Integration of Genetic Glgorithm and Multiple Kernel Support Vector Regression for Modeling Urban Growth Computers. Environ. Urban Syst., 65: 28-40. doi:http://dx.doi.org/10.1016/j.compenvurbsys.2017.04.011
30. Shalaby, A. and Tateishi, R. 2007. Remote Sensing and GIS for Mapping and Monitoring Land Cover and Land-Use Changes in the Northwestern Coastal Zone of Egypt. Appl. Geogr., 27: 28-41. doi:10.1016/j.apgeog.2006.09.004
31. Soffianian, A. and Madanian, M. 2015. Monitoring Land Cover Changes in Isfahan Province, Iran Using Landsat Satellite Data. Environ. Monitor. Assess., 187. doi:10.1007/s10661-015-4442-5
32. Statistical Center of Iran. 2006. Iranian Population and Housing Census 1385. Golestan Province General Results: 57
33. Thilagavathi, N. Subramani, T. and Suresh, M. 2015. Land Use/Land Cover Change Detection Analysis in Salem Chalk Hills, South India Using Remote Sensing and GIS. Disaster Adv., 8: 44-52.
34. Zhou, P., Huang, J., Pontius Jr, R. G. and Hong, H. 2014. Land Classification and Change Intensity Analysis in a Coastal Watershed of Southeast China. Sensors (Basel: Switzerland), 14: 11640-11658. doi:10.3390/s140711640