Comparative Evaluation of Zinc Oxide Effects on Tobacco (Nicotiana tabacum L.) Grown in Different Media

Authors
1 Plant Physiology Scection, Department of Science, Faculty of Science, Lorestan University, Khoramabad, Islamic Republic of Iran.
2 Department of Agronomy, Faculty of Agriculture, University of Khartoum, Shambat, Sudan.
3 Department of Agronomy and Plant breeding, Faculty of Agriculture, Lorestan University, Islamic Republic of Iran.
Abstract
ZnO is extensively used in a wide range of industrial applications. Hence, considerable accumulation of this substance occurs in the environment. The objective of the present study was to compare and characterize the growth of model tobacco plant at different ZnO levels in various rooting media (i.e., water-based, perlite-based, and sand-based). In soilless medium (especially water-based), ZnO levels lower and/or higher than 1µM showed negative impacts on fresh weights, some of leaves indices, and number of flowers and fruits. In soil-based media, 250 and 500 mg ZnO kg-1 often scored the highest values for the mentioned indices. However, all evaluated indices were much higher in water-based than the other two media. Flavonoids, antocyanins and FRAP capacity increased at highest levels in soil-grown and perlite-grown media, but Zn content was the same for all concentrations in soil-grown plants. Photosynthetic pigments decreased at 1,000 mg kg-1 in soil-based media. Overall, the sensitivity to small changes in ZnO levels was much higher in water-based compared to the other two media, while ZnO supply resulted in improvement of some parameters in soil-based media. Soil and perlite possess certain experimental limitations (e.g., surface absorption, unfavorable pH, low gas exchange, limited spread of roots and insoluble Zn-complexes), while water-grown plants were comparatively better than the other media in terms of experimental control and handling. These results show different effects of ZnO levels in different media and also suggest the water-based medium as a possible alternate for future accurate investigations of Zn trials.

Keywords

Subjects


1. Abdollahi, M., Eshghi, S., Tafazzoli, E. and Moosavi, N. 2011. Effects of Paclobutrazol, Boric Acid and Zinc Sulfate on Vegetative and Reproductive Growth of Strawberry cv. Selva. J. Agr. Sci. Tech., 14: 357-363.
2. Alia, N., Sardar, K., Said, M., Salma, K., Sadia, A., Sadaf, S., Toqeer, A. and Miklas, S. 2015. Toxicity and Bioaccumulation of Heavy Metals in Spinach (Spinacia oleracea) Grown in a Controlled Environment. Int. J. Environ. Res. Public Health., 12(7): 7400-7416.
3. Alloway, B. J. 2004. Zinc in Soils and Crop Nutrition. International Zinc Association Brussels, IZA publications, Belgium.
4. Alloway, B. J. 2013. Heavy Metals and Metalloids as Micronutrients for Plants and Animals. In “Heavy Metals in Soils”. Springer, The Netherlands, PP 195-209.
5. Asad, S. A., Muhammad, S., Farooq, M., Afzal, A., Broadley, M., Young, S. and West, H. 2015. Anthocyanin Production in the Hyperaccumulator Plant Noccaea caerulescens in Response to Herbivory and Zinc Stress. Acta Physiol. Plant., 37: 1-9.
6. Bellasio, C., Olejníčková, J., Tesař, R., Šebela, D. and Nedbal, L., 2012. Computer Reconstruction of Plant Growth and Chlorophyll Fluorescence Emission in Three Spatial Dimensions. Sensors, 12(1): 1052-1071.
7. Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C. M., José-Yacamán, M., Peralta-Videa, J. R. and Gardea-Torresdey, J. L. 2015. Comparative Phytotoxicity of ZnO NPs, Bulk ZnO, and Ionic Zinc onto the Alfalfa Plants Symbiotically Associated with Sinorhizobium meliloti in Soil. Sci. Total Environ., 515–516:60–69.
8. Barber, D. A. 1973. Effects of Micro-Organisms on the Absorption of Inorganic Nutrients by Plants. Pest Manage. Sci., 4(3): 367-373.
9. Barceló, J. U. A. N. and Poschenrieder, C. 1990. Plant Water Relations as Affected by Heavy Metal Stress: A Review. J. Plant Nutr., 13(1): 1-37.
10. Beale, S.I. 1999. Enzyme of Chlorophyll Biosynthesis. Photosynthesis Res., 60:43-73.
11. Beutler, A. N., Silva, V. N., Deak, E. A., Burg, G. M., Schmidt, M. R. and Toebe, M. 2014. Zinc Doses, Sources and Application Times: Seed Physiological Potential and Flooded Rice Yield. Aus. J. Crop Sci., 8(11):1517-1525.
12. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I. and Lux, A. 2007. Zinc in Plants. New Phytol., 173: 677-702.
13. Candan, N. and Tarhan, L. 2003. Changes in Chlorophyll-Carotenoid Contents, Antioxidant Enzyme Activities and Lipid Peroxidation Levels in Zn-Stressed Mentha pulegium. Turk. J. Chem., 27: 21-30.
14. Cervilla, L. M., Blasco, B., Ríos, J. J., Romero, L. and Ruiz, J. M. 2007. Oxidative Stress and Antioxidants in Tomato (Solanum lycopersicum) Plants Subjected to Boron Toxicity. Ann. Bot-London, 100: 747-756.
15. Chauhan J. S. and Rai. J. P. N. 2009. Phytoextraction of Soil Cadmium and Zinc by Microbes-Inoculated Indian Mustard (Brassica juncea). J. Plant Interact., 4(4): 279-287.
16. Farhad, S., Ahmad, M., Akbar Anjum, M., Hussain, S. 2014. The Effect of Micronutrients (B, Zn and Fe) Foliar Application on the Growth, Flowering and Corm Production of Gladiolus (Gladiolus grandiflorus L.) in Calcareous Soils. J. Agr. Sci. Tech., 16: 1671-1682.
17. Feng, Y. L., Lei, Y. B., Wang, R. F., Callaway, R. M., Valiente-Banuet, A., Li, Y. P. and Zheng, Y. L. 2009. Evolutionary Tradeoffs for Nitrogen Allocation to Photosynthesis versus Cell Walls in an Iinvasive Plant. Proc. Natl. Acad. Sci., 106(6): 1853-1856.
18. García-Gómez, C., Obrador, A., González, D., Babín, M. and Fernández, M. D. 2017. Comparative Effect of ZnO NPs, ZnO bulk and ZnSO4 in the Antioxidant Defenses of Two Plant Species Growing in Two Agricultural Soils under Greenhouse Conditions. Sci. Total Environ., 1: 589: 11-24.
19. Ganapathi, T. R., Suprasanna, P., Rao, P. S. and Bapat, V. 2004. Tobacco (Nicotiana tabacum L.): A Model System for Tissue Culture Interventions and Genetic Engineering. Int. J. Biotechnol., 3: 171-184.
20. Ghehsareh, A. M. and Kalbasi, M. 2012. Effect of Addition of Organic and Inorganic Combinations to Soil on Growing Property of Greenhouse Cucumber. Afr. J. Biotechnol., 11: 9102-9107.
21. Ghehsareh, A. M., Hematian, M. and Kalbasi, M. 2012. Comparison of Date-Palm Wastes and Perlite as Culture Substrates on Growing Indices in Greenhouse Cucumber. Int. J. Recycl. Org. Waste Agric., 1: 1-4.
22. Gliński, J. and Stępniewski, W. 1985. Soil Aeration and Its Role for Plants. CRC Press, Boca Raton.
23. González, Á., Chumillas, V. and del Carmen Lobo, M. 2012. Effect of Zn, Cd and Cr on Growth, Water Status and Chlorophyll Content of Barley Plants (H. vulgare L.). Agric. Sci., 3: 572-581.
24. De Gomes, S. M., De Lima, V. A., De Souza, A. P., Do Nascimento, J. J. V. R. and Do Nascimento, E. S. 2014. Chloroplast Pigments as Indicators of Lead Stress. Eng. Agrí. Jaboticabal., 34(5): 877-884.
25. Gupta, D. K. and Sandalio, L. M. 2012. Metal Toxicity in Plants: Perception, Signaling and Remediation. Springer-Verlag, Berlin Heidelberg.
26. Haslett, B., Reid, R. and Rengel, Z. 2001. Zinc Mobility in Wheat: Uptake and Distribution of Zinc Applied to Leaves or Roots. Ann. Bot., 87: 379-386.
27. Houshmandfar, A. and Moraghebi, F. 2011. Effect of Mixed Cadmium, cCopper, Nickel and Zinc on Seed Germination and Seedling Growth of Safflower. Afr. J. Agric. Res., 6: 1182-1187.
28. Hwang, S. S., Park, J. S. and Namkoong, W. 2007. Ultrasonic-assisted Extraction to Release Heavy Metals from Contaminated Soil. J Industrial Engine Chem-Seoul, 13: 650-656.
29. Ingram, D. L. 2014. Understanding Soilless Media Test Results and Their Implications on Nursery and Greenhouse Crop Management. Horticulture, University of Kentucky College of Agriculture, Food and Environment. Agriculture and Natural Resources Publications. 161
30. Janick, J. 1979. Horticultural Reviews. AVI, Publishing Co. Westport, Cunnecticut, E. E. UU.
31. Kalra, Y. 1997. Handbook of Reference Methods for Plant Analysis. CRC Press.
32. Kołodziejczak-Radzimska, A., and Jesionowski, T. 2014. Zinc oxide: From Synthesis to Application. Material., 7: 2833-2881.
33. Kozhevnikova, A. D., Erlikh, N. T., Zhukovskaya, N. V., Obroucheva, N. V., Ivanov, V. B., Belinskaya, A. A., Khutoryanskaya, M. Y. and Seregin, I. V. 2014. Nickel and Zinc Effects, Accumulation and Distribution in Ruderal Plants Lepidium ruderale and Capsella bursa-pastoris. Acta Physiol. Plant, 36: 3291-3305.
34. Krizek, D. T., Britz, S. J. and Mirecki, R. M. 1998. Inhibitory Effects of Ambient Levels of Solar UV-A and UV-B radiation on Growth of cv. New Red Fire Lettuce. Physiol Plant., 103: 1-7.
35. Lalelou, F. S. and Fateh, M. 2014. Effects of Different Concentrations of Zinc on Chlorophyll, Starch, Soluble Sugars and Proline Content in Cucurbita pepo. Int. J. Biosci., 4: 6-12.
36. Lee, J., Lee, B., Kang, J., Bae, J., Ku, Y., Gorinstein, S. and Lee, J. 2014. Effect of Root Zone Aeration on the Growth and Bioactivity of Cucumber Plants Cultured in Perlite Substrate. Biologia., 69: 610-617.
37. Lichtenthaler, H. K. and Buschmann, C. 2001. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protocols Food Analyt. Chem., F4. 3: 821-828.
38. Marinou, E., Chrysargyris, A. and Tzortzakis, N. 2013. Use of Sawdust, Coco Soil and Pumice in Hydroponically Grown Strawberry. Plant Soil Environ., 59: 452–459.
39. Michael, P. I. and Krishnaswamy, M. 2014. Membrane Damage and Activity of Antioxidant Enzymes in Response to Zinc and High Irradiance Stress in Cowpea Plant. Int. J. Curr. Res. Acad. Rev., 2: 112-128.
40. Moura, D. J., Péres, V. F., Jacques, R. A. and Saffi, J. 2012. Heavy Metal Toxicity: Oxidative Stress Parameters and DNA Repair. In: “Metal Toxicity in Plants: Perception, Signaling and Remediation”. Springer, PP. 187-205
41. Pandey, S. K. and Singh, H., 2011. A Simple, Cost-Effective Method for Leaf Area Estimation. J. Bot., 1-6.
42. Roca-Pérez, L., Boluda, R. and Pérez-Bermúdez, P. 2004. Soil-Plant Relationships, Micronutrient Contents, and Cardenolide Production in Natural Populations of Digitalis obscura. J. Plant Nutr. Soil Sci., 167: 79-84.
43. Rosen, J. A., Pike, C. S. and Golden, M. L. 1977. Zinc, Iron, and Chlorophyll Metabolism in Zinc-Toxic Corn. Plant Physiol., 59: 1085-1087.
44. Saeidnejad, A. H. and Kafi, M. 2013. Alleviative Effects of Zinc on Physiological Properties and Antioxidants Activity of Maize Plants under Salinity Stress. Int. J. Agr. Crop Sci., 5(5): 529-537.
45. Sagardoy, R., Morales, F., López-Millán, A. F., Abadía, A. and Abadía, J. 2009. Effects of Zinc Toxicity on Sugar Beet (Beta vulgaris L.) Plants Grown in Hydroponics. Plant Biol., 11: 339-350.
46. Sarı, A., Şahinoğlu, G., and Tüzen. M., 2012. Antimony (III) Adsorption from Aqueous Solution Using Raw Perlite and Mn-Modified Perlite: Equilibrium, Thermodynamic, and Kinetic Studies. Ind. Eng. Chem. Res., 51(19): 6877–6886.
47. Schaeffer, S., Koepke, T. and Dhingra, A. 2012. Tobacco: A Model Plant for Understanding the Mechanism of Abiotic Stress Tolerance. Improve Crop Resist Abio Stress, 1-2: 1169-1201.
48. Schulze, E-D., Beck, E. and Mu¨ller-Hohenstein, K. 2005. Plant Ecology. Berlin ⁄ Heidelberg, Germany: Springer.
49. Sharma, S., Sharma, P., Datta, S. P. and Gupta, P. 2010. Morphological and Biochemical Response of Cicer arietinum L. var. pusa-256 towards an Excess of Zinc Concentration. Life Sci., 7: 95-98.
50. Siddiqi, M. Y., Glass, A. D., Ruth, T. J. and Fernando, M. 1989. Studies of the Regulation of Nitrate Influx by Barley Seedlings Using 13NO3-. Plant Physiol., 90: 806-813.
51. Sobrino-Plata, J., Ortega-Villasante, C., Flores-Cáceres, M. L., Escobar, C., Del Campo, F. F. and Hernández, L. E. 2009. Differential Alterations of Antioxidant Defenses as Bio Indicators of Mercury and Cadmium Toxicity in Alfalfa. Chemosphere, 77: 946-954.
52. Szôllôsi, R., Kálmán, E., Medvegy, A., Petô, A. and Varga, S. L. 2011. Studies on Oxidative Stress Caused by Cu and Zn Excess in Germinating Seeds of Indian Mustard (Brassica juncea L.). Acta Biol. Szeged, 55: 175-178.
53. Tewari, R. K., Kumar, P. and Sharma, P. N. 2008. Morphology and Physiology of Zinc-Stressed Mulberry Plants. J. Plant Nutr. Soil Sci., 171: 286-294.
54. Vázquez, S. and Carpena-Ruiz, R. 2005. Use of Perlite in Cadmium Plant Studies: An Approach to Polluted Soil Conditions. J. Environ. Monit., 7: 1355-1358.
55. Vepraskas, M. J. 1994. Plant Response Mechanisms to Soil Compaction. In: “Plant-Environment Interactions”, (Ed.): Wilkinson, R. E. Marcel Dekker, Inc., USA, PP. 263–287.
56. Wang, P., Menzies, N. W., Lombi, E., McKenna, B. A., Johannessen, B., Glover, C. J., Kappen, P. and Kopittke, P. M. 2013. Fate of ZnO Nanoparticles in Soils and Cowpea (Vigna unguiculata). Environ. Sci. Technol., 47(23): 13822–13830.
57. Wang, X., Yang, X., Chen, S., Li, Q., Wang, W., Hou, C., Gao, X., Wang, Li. And Wang, S. 2016. Zinc Oxide Nanoparticles Affect Biomass Accumulation and Photosynthesis in Arabidopsis. Front. Plant Sci., 12 January.
58. Wagner, G. J. 1979. Content and Vacuole/Extravacuole Distribution of Neutral Sugars, Free Amino Acids, and Anthocyanin in Protoplasts. Plant Physiol., 64: 88-93.
59. Wagner, G., Korenkov, V., Judy, J. D. and Bertsch, P. M. 2016. Nanoparticles Composed of Zn and ZnO Inhibit Peronospora tabacina Spore Germination In Vitro and P. tabacina Infectivity on Tobacco Leaves. Nanomaterials., 6(50): 1-10.
60. Weisany, W., Sohrabib, Y., Heidarib, G., Siosemardehb, A., Badakhshanb, H. 2014. Effects of Zinc Application on Growth, Absorption and Distribution of Mineral Nutrients under Salinity Stress in soybean (Glycine max L.). J Plant Nutr., 37(14): 2255-2269.
61. Wesolowski, D. J., Ezeth, P., Palmer, D. A., 1998. ZnO Solubility and Zn21 Complexation by Chloride and Sulfate in Acidic Solutions to 290°C with In-Situ pH Measurement. Geochimica et Cosmochimica Acta., 62(6): 971–984.
62. Wojdyło, A., Oszmiański, J. and Czemerys, R. 2007. Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs. Food Chem., 105: 940-949.
63. Wu, K., Yuan, S., Guanhua, X., Shi, W., Pan, B., Guan, H., Shen, B. and Shen, Q. 2014. Root Exudates from Two Tobacco Cultivars Affect Colonization of Ralstonia solanacearum and the Disease Index. Eur J Plant Pathol., 141: 667-677.
64. Yoon, J., Cao, X., Zhou, Q. and Ma, L. Q. 2006. Accumulation of Pb, Cu, and Zn in Native Plants Growing on a Contaminated Florida Site. Sci. Total Environ., 368: 456-464.