Broadband Dielectric Properties of Honey: Effect of Water Content

Authors
1 College of Chemistry, Beijing Normal University, Beijing, 100875, China.
2 State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing, 100875, China.
Abstract
Influence of water on the dielectric properties of jujube, yellow-locust, and vitex honey was investigated by dielectric spectroscopy in broadband from 40 Hz-40 GHz. At lower frequencies, two relaxations which were from interface polarization and dipole orientation polarization of macromolecules in honey were observed. Other relaxations contributed by free and bound water were observed at microwave frequencies. The analysis of the observed relaxations revealed that the honey/water interface and bound water molecules that interact with the macromolecules in honey are responsible for the changed dielectric properties of honey solutions. Besides, the linear correlations between the permittivity (around 2.45 GHz) and water content of honey solutions were developed, which indicates that water content in honey solutions can be measured by dielectric spectroscopy. In addition, we also compared the dielectric properties of different pure honey types and found that the pure yellow-locust honey, which contains the maximum water content, has the highest permittivity. This suggests that different honey types with different water content can be roughly identified by dielectric spectroscopy. This study shows that the water content influences the dielectric properties of honey and dielectric spectroscopy is feasible for detecting honey adulteration with water.

Keywords

Subjects


1. Afzal, A., Mousavi, S. F. and Khadem, M. 2010. Estimation of Leaf Moisture Content by Measuring the Capacitance. J. Agr. Sci. Tech., 12(3): 339-346.
2. Ahmed, J., Prabhu, S. T., Raghavan, G. S. V. and Ngadi, M. 2007. Physico-Chemical, Rheological, Calorimetric and Dielectric Behavior of Selected Indian Honey. J. Food Eng., 79(4): 1207-1213.
3. Angulo-Sherman, A. and Mercado-Uribe, H. 2011. Dielectric Spectroscopy of Water at Low Frequencies: The Existence of an Isopermitive Point. Chem. Phys. Lett., 503(4): 327-330.
4. Assil, H. I., Sterling, R. and Sporns, P. 1991. Crystal Control in Processed Liquid Honey. J. Food Sci., 56: 1034–1041.
5. Barba, A. A. and Lamberti, G. 2013. Dielectric Properties of Pineapple as Function of temperature and Water Content. Int. J. Food Sci. Tech., 48(6): 1334-1338.
6. Camara, V. C. and Laux, d. 2010. Moisture Content in Honey Determination with a Shear Ultrasonic Reflectometer. J. Food Eng., 96(1): 93-96.
7. Codex Alimentarius Commission. 2001. Revised Codex Standard for Honey CODEX STAN 12. Revisions (1981) and 2 (1987).
8. Council Directive 2001/110 Relating to Honey. 2002. Official Journal of the European Communities, L10 47.
9. Dobre, I., Georgescu, L. A., Alexe, P., Escuredo, O. and Seijo, M. C. 2012. Rheological Behavior of Different Honey Types from Romania. Food Res. Int., 49(1): 126-132.
10. Doner, L. W. 1977. The Sugars of Honey: A Review. J. Sci. Food Agr., 28: 443–456.
11. El Khaled, D., Castellano, N. N., Gázquez, J. A., Perea-Moreno, A. J. and Manzano-Agugliaro, F. 2016. Dielectric Spectroscopy in Biomaterials: Agrophys. Matr., 9(5): 310.
12. Fang, M., Gao, J., Wang, S., Lian, Y. and Zhao, K. 2010. Dielectric Monitoring Method for the Drug Release Mechanism of Drug-Loading Chitosan Microspheres. Chinese Sci. Bull., 55(13): 1246-1254.
13. Fukuzaki, M., Miura, N., Shinyashiki, N., Kurita, D., Shioya, S., Haida, M. and Mashimo, S. 1995. Comparison of Water Relaxation Time in Serum Albumin Solution Using Nuclear Magnetic Resonance and Time Domain Reflectometry. J. Phys. Chem., 99(1): 431-435.
14. Galema, S. A. 1997. Microwave Chemistry. Chem. Soc. Rev., 26(3): 233-238.
15. Guo, W., Zhu, X., Liu, Y. and Zhuang, H. 2010. Sugar and Water Contents of Honey with Dielectric Property Sensing. J. Food Eng., 97(2): 275-281.
16. Guo, W., Liu, Y., Zhu, X. and Zhuang, H. 2011. Sensing the Water Content of Honey from Temperature-Dependent Electrical Conductivity. Meas. Sci. Technol., 22(8): 085706.
17. Lazaridou, A., Biliaderis, C. G., Bacandritsos, N. and Sabatini, A. G. 2004. Composition, Thermal and Rheological Behaviour of Selected Greek Honeys. J. Food Eng., 64(1): 9-21
18. Mashimo, S., Kuwabara, S., Yagihara, S. and Higasi, K. 1987. Dielectric Relaxation Time and Structure of Bound Water in Biological Materials. J. Phys. Chem., 91(25): 6337-6338.
19. Havriliak, S. and Negami, S. 1967. A Complex Plane Representation of Dielectric and Mechanical Relaxation Processes in Some Polymers. Polymer, 8: 161-210.
20. Karásková, P., Fuentes, A., Fernández-Segovia, I., Alcañiz, M., Masot, R. and Barat, J. M. 2011. Development of a Low-Cost Non-Destructive System for Measuring Moisture and Salt Content in Smoked Fish Products. Procedia Food Sci., 1: 1195-1201.
21. Kaminski, K., Adrjanowicz, K., Zakowiecki, D., Kaminska, E., Wlodarczyk, P., Paluch, M. and Tarnacka, M. 2012. Dielectric Studies on Molecular Dynamics of Two Important Disaccharides: Sucrose and Trehalose. Mol. Pharmaceut., 9(6): 1559-1569.
22. Puranik, S., Kumbharkhane, A. and Mehrotra, S. 1991. Dielectric properties of honey-water mixtures between 10 MHz to 10 GHz using time domain technique. J. Microwave Power EE., 26(4): 196-201.
23. Schwan, H. P. 2013. Determination of Biological Impedances. Phys. Tech. Biol. Res., 6(Part B): 323-407.
24. Toyoda, K. 2003. The Utilization of Electric Properties. In: “The Handbook of Non-Destructive Detection”. Science Forum, Tokyo, PP. 108-126.
25. Traffano-Schiffo, M. V., Castro-Giraldez, M., Colom, R. J. and Fito, P. J. 2015. Study of the Application of Dielectric Spectroscopy to Predict the Water Activity of Meat during Drying Process. J. Food Eng., 166: 285-290.
26. Turhan, I., Tetik, N., Karhan, M., Gurel, F. and Reyhan Tavukcuoglu, H. 2008. Quality of Honeys Influenced by Thermal Treatment. LWT – Food Sci. Technol., 41(8): 1396–1399.