Effectiveness of the Bacillus sp. SP-A9 Strain as a Biological Control Agent for Spring Wheat (Triticum aestivum L.)

Authors
1 Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Environmental Management and Agriculture, Prawocheńskiego 17, 10-720, Olsztyn, Poland.
2 University of Warmia And Mazury, Faculty of Environmental Management and Agriculture, Department of Entomology, Phytopathology and Molecular Diagnostic, Prawocheńskiego 17, 10-721 Olsztyn, Poland
3 Institute of Plant Protection; National Research Institute, Virology and Bacteriology Department, Władysława Węgorka 20, 60-318 Poznań, Poland.
4 University of Warmia and Mazury in Olsztyn, Faculty of Environmental Management and Agriculture, Department of Plant Breeding and Seed Production, Plac Łódzki 3, 10-724 Olsztyn, Poland.
Abstract
The SP-A9 strain of Bacillus sp., which is most closely related to Bacillus subtilis, demonstrated excellent antifungal properties in laboratory analyses. The percentage of inhibition in the dual culture test was similar for all investigated phytopathogens (Fusarium culmorum, F. oxysporum and Monographella nivalis) at approximately 46%. The analyzed strain was found to be cellulolytic and strongly chitinolytic, and its biochemical properties indicate that it easily adapted to various environmental conditions. The strain's sporulation ability and high proliferation rate in acidic, alkaline, and highly saline environments (9% NaCl) further confirmed its adaptability to adverse conditions. In a pot experiment, the basic biometric parameters of spring wheat grain inoculated with Bacillus sp. SP-A9 were not modified, but a significant increase in grain yield was observed (by 18% in soil contaminated with F. culmorum and by 19% in soil contaminated with F. oxysporum). The increase in yield was correlated with the number of wheat plants, which suggests that the analyzed strain minimized the pathogen-induced inhibition of plant growth. Bacillus sp. SP-A9 can reduce economic losses resulting from diseases caused by fungi of the genus Fusarium and contribute to reduced use of crop protection chemicals, thus minimizing environmental pollution.

Keywords

Subjects


1. Ahemad, M. and Kibret, M. 2014. Mechanisms and Applications of Plant Growth Promoting Rhizobacteria: Current Perspective. J. King Saud Univ. Sci., 26. Available on: http://dx.doi.org/10.1016/j.jksus.2013.05.001
2. Ashwini, N. and Srividya, S. 2013. Potentiality of Bacillus subtilis as Biocontrol Agent for Management of Anthracnose Disease of Chili Caused by Colletotrichum gloeosporioides OGC1. 3 Biotech., 4(2): 127-136.
3. Bai, Y. M., Zhou, X. M. and Smith, D. L. 2003. Enhanced Soybean Plant Growth Resulting from Coinoculation of Bacillus Strains with Bradyrhizobium japonicum. Crop Sci., 43: 1774–1781.
4. Benhamou, N., Kloepper, J. W., Quadt-Hallman, A. and Tuzun, S. 1996. Induction of Defense-Related Ultrastructural Modifications in Pea Root Tissues Inoculated with Endophytic Bacteria. Plant Physiol., 112: 919–929.
5. Bhattacharyya, P. N. and Jha, D. K. 2012. Plant Growth-Promoting Rhizobacteria (PGPR): Emergence in Agriculture. World J. Microbiol. Biotechnol., 28: 1327–1350.
6. Cornea C. P., Israel-Roming F., Ciuca M. and Voaides C. 2013. Natural Occurrence of Fusarium Species and Corresponding Chemotypes in Wheat Scab Complex from Romania. Rom. Biotech. Lett., 18(6): 8787-8795.
7. Grosu A.I., Sicuia O.-A., Dobre A., Voaide C. and Cornea C. P. 2015. Evaluation of Some Bacillus spp. Strains for the Biocontrol of Fusarium graminearum and F. culmorum in Wheat. Agric. Agric. Sci. Procedia, 6: 559 – 566.
8. Handelsman, J., Raffel, S., Mester, E. H., Wunderlich, L. and Grau, C. R. 1990. Biological Control of Damping-Off of Alfalfa Seedlings with Bacillus cereus UW85. Appl. Environ. Microb., 56: 713–718.
9. Hankin, L. and Anagnostakis, S. L. 1977. Solid Media Containing Carboxymethylcellulose to Detect Cx, Cellulase Activity of Micro-organisms. J. Gen. Microbiol., 98: 109-115.
10. Huang, T. P., Tzeng, D. D. S., Wong, A. C. L., Chen, C. -H., Lu, K. M., Lee, Y. H., Huang W. D., Hwang B. F. and Tzeng K. C. 2012. DNA Polymorphisms and Biocontrol of Bacillus Antagonistic to Citrus Bacterial Canker with Indication of the Interference of Phyllosphere Biofilms. PLoS ONE, 7(7): e42124. doi:10.1371/journal.pone.0042124
11. Idris, E. E., Iglesias, D. J., Talon, M. and Borriss, R. 2007. Tryptophan-Dependent Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact., 20: 619–626.
12. Islam, M. R., Jeong Y. T., Lee, Y. S. and Song, C. H. 2012. Isolation and Identification of Antifungal Compounds from Bacillus subtilis C9 Inhibiting the Growth of Plant Pathogenic Fungi. Mycobiol., 40(1): 59-66.
13. Ittu, M., Cana L., Voica M. and Lupu C. 2010. Multi-Environment Evaluation of Disease Occurrence, Aggressiveness and Wheat Resistance in Wheat/Fusarium Pathosystem. Rom. Agric. Res., 27: 17-26.
14. Kadyan, S., Panghal, M., Singh, K. and Yadav, J. P. 2013. Development of a PCR Based Marker System for Easy Identification and Classification of Aerobic Endospore Forming Bacilli. Springer Plus, 2(596). http://doi.org/10.1186/2193-1801-2-596
15. Lane, D. J. 1991. 16S/23S rRNA Sequencing. In: “Nucleic Acid Techniques in Bacterial Systematics”, (Eds.): Stackebrandt, E. and Goodfellow, M. John Wiley and Sons, New York, NY, USA, PP. 115-175.
16. López-Bucio, J., Campos-Cuevas, J. C., Hernández-Calderón, E., Velásquez-Becerra, C., Farías-Rodríguez, R.; Macías-Rodríguez, L. I. and Valencia-Cantero, E. 2007. Bacillus megaterium Rhizobacteria Promote Growth and Alter Root-System Architecture through an Auxin- and Ethylene-Independent Signaling Mechanism in Arabidopsis thaliana. Mol. Plant-Microbe Interact., 20: 207–217.
17. Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H. M., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A. H. M. and Raaijmakers, J. M. 2012. Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Sci., 332: 1097-1100.
18. Patil, S., Shivannavar, C. T., Bheemaraddi, M. C. and Gaddad, S. M. 2015. Antiphytopathogenic and Plant Growth Promoting Attributes of Bacillus Strains Isolated from Rhizospheric Soil of Chickpea. J. Agr. Sci. Tech., 17(5): 1365-1377.
19. Praveen Kumar, G., Mir Hassan Ahmed, S. K., Desai, S., Leo Daniel Amalraj, E. and Rasul, A. 2014. In Vitro Screening for Abiotic Stress Tolerance in Potent Biocontrol and Plant Growth Promoting Strains of Pseudomonas and Bacillus spp. Int. J. Bacteriol., 2014, 6.
20. Probanza, A., Mateos, J., García, J.L., Ramos, B., de Felipe, M. and Mañero, F. G. 2001. Effects of Inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L. Growth, Bacterial Rhizosphere Colonization, and Mycorrhizal Infection. Microbial. Ecol., 41: 140–148.
21. Przemieniecki, S. W, Kurowski, T. P. and Korzekwa, K. 2014a. Chemotypes and Geographic Distribution of the Fusarium graminearum Species Complex. Environ. Biotechnol., 10(2):45-59.
22. Przemieniecki, S. W., Kurowski, T. P., Korzekwa, K. and Karwowska, A. 2014b. The Effect of Psychrotrophic Bacteria Isolated from the Root Zone of Winter Wheat on Selected Biotic and Abiotic Factors. J. Plant Prot. Res., 54(4): 407–413.
23. Przemieniecki, S. W., Kurowski, T. P. and Karwowska, A. 2015. Plant Growth Promoting Potentials of Pseudomonas sp. SP0113 Isolated from Potable Water from a Closed Water Well. Arch. Bio. Sci., 67(2): 663–673.
24. Rekha, P. D., Lai, W. A., Arun, A. B. and Young, C. C. 2007. Effect of Free and Encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on Plant Growth under Gnotobiotic Vonditions. Bioresour. Technol., 98(2): 447-451.
25. Roberts, W. K. and Selitrennikoff, C. P. 1988. Plant and Bacterial Chitinases Differ in Antifungal Activity. J. Gen. Microbiol., 134: 169–176.
26. Rooney, A. P., Price, N. P., Ehrhardt, C., Swezey, J. L. and Bannan, J. D. 2009. Phylogeny and Molecular Taxonomy of the Bacillus subtilis Species Complex and Description of Bacillus subtilis subsp. inaquosorum subsp. nov. Int. J. Syst. Evol. Microbiol., 59: 2429-2436.
27. Schwartz, A. R., Ortiz, I., Maymon, M., Herbold, C. W., Fujishige, N. A., Vijanderan, J. A., Villella, W., Hanamoto, K., Diener, A., Sanders, E. R., DeMason, D. A. and Hirsch, A. M. 2013. Bacillus Simplex: A Little Known PGPB with Anti-Fungal Activity — Alters Pea Legume Root Architecture and Nodule Morphology When Coinoculated with Rhizobium leguminosarum bv. viciae. Agron., 3: 595-620.
28. Unalmis, S., Ayvaz, A., Yilmaz, S. and Azizoglu, U. 2015. Molecular Screening and Bioactivity of Native Bacillus thuringiensis Isolates. J. Agr. Sci. Tech., 17(5): 1197-1207.
29. Zhao, Y., Selvaraj, J. N., Xing, F., Zhou, L., Wang, Y., Song, H., Tan, X., Sun, L., Sangare, L., Folly, Y. M. E. and Liu, Y. Antagonistic Action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS ONE, 9(3): e92486.
doi:10.1371/journal.pone.0092486