Bacillus amyloliquefaciens as a Biocontrol Agent Improves the Management of Charcoal Root Rot in Melon

Authors
Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
Abstract
Seventy five bacterial strains were isolated from cucurbits rhizosphere and examined for antagonistic activities against Macrophomina phaseolina isolate 44, the causal agent of melon charcoal root rot disease. The results of screening strains including B2, B11, B12 and BKN showed high potential of antagonistic activities against the pathogen in laboratory experiments. Inhibition of mycelial growth varied from 54.3 to 62.22%, 39.43 to 54.82%, 78.52 to 100%, and 64.45 to 88.89% in dual culture, volatile metabolite, antibiotic production, and cell free culture tests, respectively. In greenhouse experiment, seed treatment with strain B2 significantly (P= 0.01) controlled the disease by increasing plant growth indices including height, shoot and root fresh weight, shoot and root dry weight by 37.98, 36.27, 32.97, 34.44, and 30.39%, respectively, as compared to the control. The biochemical and physiological tests as well as gyrA sequence confirmed these four strains as Bacillus amyloliquefaciens. Results indicated that strain B2 could be an important new biological control agent for charcoal root rot disease of melon.

Keywords

Subjects


1. Alvindia, D. G. and Natsuaki, K. T. 2009. Biocontrol Activities of Bacillus amyloliquefaciens dga14 Isolated from Banana Fruit Surface against Banana Crown Rot-Causing Pathogens. Crop Prot., 28(3): 236-242.
2. Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B. and Fickers, P. 2009. Bacillus amyloliquefaciens GA1 as a Source of Potent Antibiotics and Other Secondary Metabolites for Biocontrol of Plant Pathogens. Microb. Cell Fact., 8: 63-65.
3. Arrebola, E., Sivakumar, D., Bacigalupo, R. and Korsten, L. 2010. Combined Application of Antagonist Bacillus amyloliquefaciens and Essential Oils for the Control of Peach Postharvest Diseases. Crop Prot., 29 (4): 369-377.
4. Burgess, L., Liddell, C. M. and Summerell, B. A. 1988. Laboratory Manual for Fusarium Research. 2nd Edition, Univ. Sydney, Australia.
5. Chen, X., Scholz, R., Borriss, M., Junge, H., Mogel, G., Kunz, S. and Borriss, R. 2009. Difficidin and Bacilysin Produced by Plant Associated Bacillus amyloliquefaciens Are Efficient in Controlling Fire Blight Disease. J. Biotechnol., 140: 38-44.
6. Dennis, C. and Webster, J. 1971. Antagonistic Properties of Species-Groups of Trichoderma: III. Hyphal Interaction. Trans. Br. Mycol. Soc., 57: 363-365.
7. Droby, M., Wisniewski, D., Macarisin, D. and Wilson, C. 2009. Twenty Years of Postharvest Biocontrol Research: Is It Time for a New Paradigm. Postharvest Biol. Technol., 52 (2): 137-145.
8. Etebarian, H. R., Scott, E. S. and Wicks., T. J. 2000. Trichoderma harzianum T39 and T. virens DAR74290 as Potential Biological Control Agents for Phytophtora erythroseptica. Eur. J. Plant Pathol., 106 (4): 329-337.
9. Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S. and Savchuk, S. C. 2005. Identification and Use of Potential Bacterial Organic Antifungal Volatiles in Biocontrol. Soil Biol. Biochem., 37 (5): 955-964.
10. Fiddaman, P. J. and Rossall, S. 1993. The Production of Antifungal Volatile by Bacillus subtilis. J. Appl. Bacteriol., 74: 119-126.
11. Ghebretinsae, A. G., Thulin, M. and Barber, J. C. 2007. Nomenclatural Changes in Cucumis (Cucurbitaceae). Novon: A J. Bot. Nomenclat., 17(2): 176-178.
12. Gupta, C. P., Dubey, R. C., Kang, S. S. and Maheshwari, D. K. 2002. Plant Growth Enhancement and Suppression of Macrophomina phaseolina Causing Charcoal Rot of Peanut by Fluorescent Pseudomonas. Biol. Fert. Soil., 35 (6): 399-405.
13. Hao, W., Li, H., Hu, M., Yanf, L. and Rizwan-ul-Haq, M. 2011. Integrated Control of Citrus Green and Blue Mold and Sour Rot by Bacillus amyloliquefaciens in Combination with Tea Saponin. Postharvest Biol. Technol., 59(3): 316-323.
14. Jana, T., Sharma, T., Prasad, R. D. and Arora, D. K. 2003. Molecular Characterization of Macrophomina phaseolina and Fusarium Species by a Single Primer RAPD Technique. Res. Microbiol., 158(3): 249-257.
15. Kim, Y. H. and Janick, J. 1997. Somatic Embryogenesis and Organogenesis in Cucumber. New Zeal. J. Crop Hort. Sci., 24: 12-14.
16. Koumoutsi, A., Chen, X. H., Liesegang, A., Hitzeroth, H., Franke, G., Vater, J. and Borris, R. 2004. Structural and Functional Characterization of Gene Clusters Directing Nonribosomal Synthesis of Bioactive Cyclic Lipopeptides in Bacillus amyloliquefaciens Strain FZB42. J. Bacteriol., 186(4): 1084-1096.
17. Kraus, J. and Loper, J. 1992. Lack of Evidence for a Role of Antifungal Metabolite Production by Pseudomonas fluorescens Pf-5 in Biological Control of Pythium Damping-Off of Cucumber. Phytopathol., 82 (3): 264-271.
18. Little, T. M. and Hills, F. J. 1978. Agricultural Experimentation Design and Analysis. John Wiley and Sons, New York, PP. 350-355.
19. Liu, W. W., Mu, W., Zhu, B.Y., Du, Y. C. and Liu, F. 2008. Antagonistic Activities of Volatiles from Four Strains of Bacillus spp. and Paenibacillus spp. against Soil-Borne Plant Pathogens. Agric. Sci. Chin., 7(9): 1104-1114.
20. Livingston, J. E. 1945. Charcoal Rot of Corn and Sorghum in Nebraska. Plant Dis. Rep., 34: 45-52.
21. Meziane, H., Gavriel, S., Ismailov, Z., Chet, I., Chernin, L. and Hofte, M. 2006. Control of Green and Blue Mold on Orange Fruit by Serratia plymuthica Strains IC14 and IC1270 and Putative Modes of Action. Postharvest Biol. Technol., 39(2): 125-133.
22. Mikani, A., Etebarian, H. R., Sholberg, P. L., O’Gorman, D. T., Stokes, S. and Alizadeh, A. 2008. Biological Control of Apple Gray Mold Caused by Botrytis mali with Pseudomonas fluorescens Strains. Postharvest Biol. Technol., 48: 107-112.
23. Monte, E. and Liobell, A. 2003. Trichoderma in Organic Agriculture. Proceeding of World Avocado Congress, Granada-Malaga. (Spain). PP. 725-733.
24. Obagwu, J. and Korsten, L. 2003. Integrated Control of Citrus Green and Blue Molds Using Bacillus subtilis in Combination with Sodium Bicarbonate or Hot Water. Postharvest Biol. Technol., 28: 187-194.
25. Pal, K., Tilak, K. V., Saxena, A. K., Dey, R. and Singh, C. S. 2001. Suppression of Maize Root Disease Caused by Macrophomina phaseolina, Fusarium moniliform and Fusarium graminearum by Plant Growth Promoting Rhizobacteria. Res. Microbiol., 156(3): 209-223.
26. Partridge, J. E., Reed, J. E., Jensen, S. G. and Sidhu, G. S. 1984. Spatial and Temporal Succession of Fungal Species in Sorghum Stalks as Affected by Environment. In: “Sorghum Root and Stalk Rots: A Critical Review”, (Ed.): Mughogho, L. K. Proceedings of the Consultative Group Discussion on Research Needs and Strategies for Control of Corghum Root and Stalk Rot Diseases, 27 November–2 December 1983, Bellagio, Italy, Patancheru, India.
27. Pinchuk, I. V., Bressollier, P., Sorokulova, I.B., Verneuil, B. and Urdaci, M. C. 2002. Amicoumacin Antibiotic Production and Genetic Diversity of Bacillus subtilis Strains Isolated from Different Habitats. Res. Microbiol., 153(5): 269-276.
28. Roberts, M. S., Nakamura, L. and Cohan, F. M. 1994. Bacillus mojavensis sp. nov., Distinguishable from Bacillus subtilis by Sexual Isolation, Divergence in DNA Sequence, and Differences in Fatty Acid Composition. Int. J. Syst. Bacteriol., 44(2): 256-264.
29. Romero, D., De Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuiper, O. P., Pspuot, M. and Perez-Garcia, A. 2007. The Iturin and Fengycin Families of Lipopeptides are Key Factors in Antagonism of Bacillus subtilis towards Podosphaera fusca, Molecul. Plant-Microbe Interact. J., 20(4): 430-440.
30. San Lang, W., Shin, I. L., Wang, C. H., Tseng, K. C., Chang, W. T., Twu, Y. K., Ro, J. J. and Wang, C. L. 2002. Production of Antifungal Compounds from Chitin by Bacillus subtilis. Enzyme Microb. Tech., 31(3): 321-328.
31. Schaad, N. W., Jones, J. B. and Chum, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd Edition, St. Paul Minnesota, USA.
32. Sharma, R. R., Sing, H. D. and Sing, H. R. 2009. Biological Control of Postharvest Diseases of Fruits and Vegetables by Microbial Antagonists. Biocontrol., 50(3): 205-221.
33. Singh, V. and Deverall, B. 1984. Bacillus subtilis as a Control Agent against Fungal Pathogens of Citrus Fruit. Trans. Br. Mycol. Soc., 83(3): 487-490.
34. Singh, N., Pandey, P., Dubey, R. C. and Maheshwari, D. K. 2008. Biological Control of Root Rot Fungus Macrophomina phaseolina and Growth Enhancement of Pinus roxburgii (Sarg.) by Rhizosphere Competent Bacillus subtilis BN1. World J. Microbiol. Biot., 24(9): 1669-1679.
35. Smith, W. H. 1969. Germination of Macrophomina phaseolina Sclerotia as Affected by Pinus lambertiana Root Exudate. Can. J. Microbiol., 15(12): 1387-1391.
36. Spadaro, D. and Gullino, M. L. 2004. State of the Art and Future Prospects of the Biological Control of Postharvest Fruit Diseases. Int. J. Food Microbiol., 91(2): 185-194.
37. Usall, J., Smilanick, J., Palou, L., Denis-Arrue, N., Teixido, N. and Torres, R. 2008. Preventive and Curative Activity of Combined Treatments of Sodium Carbonates and Pantoea agglomerans CPA-2 to Control Postharvest Green Mold of Citrus Fruit. Postharvest Biol. Technol., 50: 1-7.
38. Weller, D. M. 1988. Biological Control of Soil Borne Pathogens in the Rhizosphere with Bacteria. Annu. Rev. Phytopathol., 26: 379-407.
39. Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A. 2001. Antimicrobial Activity of Culture Filtrate of Bacillus amyloliquefaciens RC-2 Isolated from Mulberry Leaves. Phytopathol., 91 (2): 181-187.
40. Yu, S. M., Kim, Y. K., Nam, H., Lee, Y. K., Lee, S., Lee, K. J. and Lee, Y. H. 2010. Suppression of Green and Blue Mold in Postharvest Mandarin Fruit by Treatment of Pantoea agglomerans 59-4. J. Plant Pathol., 26: 353-359.