Population Density and Spatial Distribution Pattern of Tuta absoluta (Lepidoptera: Gelechiidae) on Different Tomato Cultivars

Authors
1 Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box: 14115-336, Tehran, Islamic Republic of Iran.
2 Department of Greenhouse Cultivation Research, Tehran Agricultural and Natural Resources Research and Education Center, AREEO, Varamin, Islamic Republic of Iran.
Abstract
One of the most important factors in a sampling and integrated pest management program is to know the population density and spatial pattern of the insects, especially the invasive ones such as Tuta absoluta (Meyrick) that cause a serious problem in tomato cultivation. Therefore, population density and spatial distribution pattern of T. absoluta was determined in Varamin region (Tehran, Iran) during two growing seasons of 2015 and 2016 on seven tomato cultivars ('Primo Early', 'Rio Grande', 'Cal JN3', 'Petomech', 'Early Urbana Y', 'Super Strain B', and 'Super 2270'). The T. absoluta density was estimated as active mines (with live larvae) and inactive mines (without live larvae) per plant, which, summed together, resulted in the total infestation (total mines per plant). In 2015, the highest mean number of total mines made by T. absoluta was on 'Cal JN3' (21.82 mines plant-1) and the lowest mean was on 'Early Urbana Y' (11.08 mines plant-1). In 2016, the highest and lowest mean population density of T. absoluta was observed on 'Cal JN3' (14.44 larvae plant-1) and 'Super Strain B' (4.60 larvae plant-1), respectively. The spatial distribution pattern of T. absoluta was determined by using Morisita's coefficient, Taylor's power law, and Iwao's patchiness regression method as well as dispersion index of variance-to-mean-ratio. The dispersion index indicated the aggregated pattern of spatial distribution in all tomato cultivars during both years. Taylor's and Iwao's models showed aggregated pattern of distribution on Primo Early' and 'Early Urbana Y', respectively, in 2015 and on 'Super 2270' in 2016. But, on the rest of cultivars, the pattern was determined random. Also, Morisita's coefficient revealed a random distribution pattern for T. absoluta in all of the sampling dates. The smallest optimum sample sizes were estimated with Taylors' coefficients. These results revealed that tomato cultivars affected the population density and spatial distribution pattern of T. absoluta. The coefficients of the spatial pattern can be used for improving the sampling program to estimate the population density of T. absoluta accurately.

Keywords


1. Abbes, K. and Chermiti, B. 2011. Comparison of Two Marks of Sex Pheromone Dispensers Commercialized in Tunisia for Their Efficiency to Monitor and to Control by Mass-Trapping Tuta absoluta under Greenhouses. Tunis. J. Plant Prot., 6: 133-148.
2. Balzan, M. V. and Moonen, A. C. 2012. Management Strategies for the Control of Tuta absoluta (Lepidoptera: Gelechiidae) Damage in Open-Field Cultivations of Processing Tomato in Tuscany (Italy). EPPO Bull., 42: 217-225.
3. Baniameri, V. and Cheraghian, A. 2012. The First Report and Control Strategies of Tuta absoluta in Iran. Bull. OEPP/EPPO, 42: 322- 324.
4. Constabel, C. P., Bergey, D. R. and Ryan, C. A. 1995. Systemin Activates Synthesis of Wound-Inducible Tomato Leaf Polyphenol Oxidase via. the Octadecanoid Defense Signaling Pathway. Proc. Natl. Acad. Sci., 92: 407-411.
5. Castle, S. J. and Naranjo, S. E. 2009. Sampling Plans, Selective Insecticides and Sustainability: The Case for IPM as ‘Informed Pest Management’. Pest Manage. Sci., 65:1321-1328.
6. Cherif, A., Mansour, R. and Grissa-Lebdi, K. 2013. Biological Aspects of Tomato Leafminer Tuta absoluta (Lepidoptera: Gelechiidae) in Conditions of Northeastern Tunisia: Possible Implications for Pest Management. Environ. Exp. Biol., 11: 179-184.
7. Cristina, A. F., Jorge, B. T., Adriano, M. V. F. and Angela, M. I. F. 2008. Parasitism of Tuta absoluta in Tomato Plants by Trichogramma pretiosum Riley in Response to Host Density and Plant Structures. Cienc. Rural., 38: 1504-1509.
8. Darbemamieh, M., Fathipour, Y. and Kamali, K. 2011. Population Abundance and Seasonal Activity of Zetzellia pourmirzai (Acari: Stigmaeidae) and Its Preys Cenopalpus irani and Bryobia rubrioculus (Acari: Tetranychidae) in Sprayed Apple Orchards of Kermanshah, Iran. J. Agr. Sci. Tech., 13: 143-154
9. Desneux, N., Luna, M. G., Guillemaud, T. and Urbaneja, A. 2011. The Invasive South American Tomato Pinworm, Tuta absoluta, Continues to Spread in Afro-Eurasia and Beyond: The New Threat to Tomato World Production. J. Pest Sci., 84: 403-408.
10. Desneux, N., Wajnberg, E., Wyckhuys, K. A. G., Burgio, G., Arpaia, S., Narvaez-Vasquez, C. A., Gonzalez-Cabrera, J., Catalan Ruescas, D., Tabone, E., Frandon, J., Pizzo, J., Poncet, C., Cabello, T. and Urbaneja, A. 2010. Biological Invasion of European Tomato Crops by Tuta absoluta: Ecology, Geographic Expansion and Prospects for Biological Control. J. Pest Sci., 83: 197-215.
11. Ghaderi, S., Fathipour, Y. and Asgari, S. 2017. Susceptibility of Seven Selected Tomato Cultivars to Tuta absoluta (Lepidoptera: Gelechiidae): Implications for Its Management. J. Econ. Entomol., 110: 421-429.
12. Harizanova, V., Stoeva, A. and Mohamedova, M. 2009. Tomato Leaf Miner, Tuta absoluta (Povolny) (Lepidoptera: Gelechiidae): First Record in Bulgaria. Agric. Sci. Tech., 1: 95- 98.
13. Hassan, M. N. and Alzaidi, Sh. 2009. Tuta absoluta - A Serious Pest Advancing in the Mediterranean Region, Role of Pheromones in Management Strategies. Integ. Pest Manage., 51: 85-87.
14. Haughes, G. M. 1996. Incorporating Spatial Pattern of Harmful Organisms into Crop Loss Models. Crop Prot., 15: 407-421.
15. Ifoulis, A. A. and Savopulou-Soultani, M. 2006. Developing Optimum Sample Size and Multistage Sampling Plans for Lobesia botrana (Lepidoptera: Tortricidae) Larval Infestation and Injury in Northern Greece. J. Econ. Entomol., 99: 1890-1898.
16. Iwao, S. 1968. A New Regression Method for Analyzing the Aggregation Pattern of Animal Populations. Res. Popul. Ecol., 10: 1-20.
17. Iwao, S. and Kuno, E. 1968. Use of the Regression of Mean Crowding on Mean Density for Estimating Sample Size and the Transformation of Data for the Analysis of Variance. Res. Popul. Ecol., 10: 1-20.
18. Jarosik, V., Honek, A. and Dixon, A. F. G. 2003. Natural Enemy Ravine Revisited: The Importance of Sample Size for Determining Population Growth. Ecol. Entomol., 28: 85-91.
19. Kianpour, R., Fathipour, Y., Kamali, K. and Naseri, B. 2010. Bionomics of Aphis gossypii (Homoptera: Aphididae) and Its Predators Coccinella septempunctata and Hippodamia variegata (Coleoptera: Coccinellidae) in Natural Conditions. J. Agr. Sci. Tech., 12: 1-11.
20. Khodayari, S., Fathipour, Y., Kamali, K. and Naseri, B. 2010. Seasonal Activity of Zetzellia mali (Stigmaeidae) and Its Preys Eotetranychus frosti (Tetranychidae) and Tydeus longisetosus (Tydeidae) in Unsprayed Apple Orchards of Maragheh, Northwestern of Iran. J. Agr. Sci. Tech., 12: 549-558.
21. Korycinska, A. and Moran, H. 2009. South American Tomato Moth Tuta absoluta. The Food and Environment Research Agency (Fera). www.defra.gov.uk/fera/plants/plantHealth
22. Leite, G. L. D., Picanço, M., Guedes, R. N. C. and Zanuncio, J. C. 2001. Role of Plant Age in the Resistance of Lycopersicon hirsutum f. glabratum to the Tomato Leafminer Tuta absoluta (Lepidoptera: Gelechiidae). Sci. Hort., 89: 103-113.
23. Maluf, W.R., Inoue, I. F., Ferreira, R. D. P. D., Gomes, L. A. A., Castro, E. M. D. and Cardoso, M. D. G. 2007. Higher Glandular Trichome Density in Tomato Leaflets and Repellence to Spider Mites. Pesqui. Agropecu. Bras., 42: 1227-1235.
24. Maluf, W. R., Silva, V. F., Cardosa, M. G., Gomes, L. A. A., Neto, A. C. G., Maciel, G. M. and Nizio, D. A. C. 2010. Resistance to the South American Tomato Pinworm Tuta absulata in High Acylsugar and/or High Zingiberene Tomato Genotypes. Euphytica, 176: 113-123.
25. Naseri, B., Fathipour, Y. and Talebi, A. A. 2009. Population Density and Spatial Distribution Pattern of Empoasca decipiens (Hemiptera: Cicadellidae) on Different Bean Species. J. Agr. Sci. Tech., 11: 239- 248.
26. Oliveira, C. M. D., Andrade Júnior, V. C. D., Maluf, W. R., Neiva, I. P. and Maciel, G. M. 2012. Resistance of Tomato Strains to the Moth Tuta absoluta Imparted by Allelochemicals and Trichome Density. Ciênc. Agrotec., 36: 45-52.
27. Patil, G. P. and Stiteler, W. M. 1974. Concepts of Aggregation and their Quantification: A Critical Review with Some New Results and Applications. Res. Popul. Ecol., 15: 238-254.
28. Pedigo, L. P. and Buntin, G. D. 1994. Handbook of Sampling Methods for Arthropods in Agriculture. CRC Press, Florida, 714 PP.
29. Rahmani, H., Fathipour, Y. and Kamali, K. 2010. Spatial Distribution and Seasonal Activity of Panonychus ulmi (Acari: Tetranychidae) and Its Predator Zetzellia mali (Acari: Stigmaeidae) in Apple Orchards of Zanjan, Iran. J. Agr. Sci. Tech., 12: 155-165.
30. Sedaratian, A., Fathipour, Y., Talebi, A. A. and Farahani, S. 2010. Population Density and Spatial Distribution Pattern of Thrips tabaci (Thysanoptera: Thripidae) on Different Soybean Varieties. J. Agr. Sci. Tech., 12: 275-288.
31. Southwood, T. R. E. 1978. Ecological Methods with Particular Reference to the Study of Insect Populations, 2nd Edition, Chapman and Hall, London, 524 PP.
32. Southwood, T. R. E. and Henderson, P. A. 2000. Ecological Methods. Third Edition, Blackwell Sciences, Oxford, 592 PP.
33. Taylor, L. R. 1961. Aggregation, Variance to the Mean. Nature, 189: 732-735.
34. Thaler, J. S., Stout, M. J., Karban, R. and Duffey, S. S. 1996. Exogenous Jasmonates Simulate Insect Wounding in Tomato Plants (Lycopersicon esculentum) in the Laboratory and Field. J. Chem. Ecol., 22: 1767-1781.
35. Wilson, J. R. 1985. Introduction to Graph Theory. 3rd Edition, Longman Scientific and Technical, UK, Essex.