Phenotypic and Molecular Responses of Wheat (Triticum aestivum L.) to Chronic Gamma Irradiation

Authors
1 Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup 580-185, Republic of Korea.
2 NJ Biopia Co. Ltd, Haseo-ro 672, Gwangju 500-260, Republic of Korea.
3 Division of Biotechnology, Korea University, Seongbuk-Gu, Seoul 136-713, Republic of Korea.
Abstract
The objectives of this study were to determine the effects of chronic gamma irradiation on growth and biochemical characteristics of wheat. Wheat plants were exposed to a 60Co gamma rays at doses ranging from 10 to 150 Gy for 3 weeks. Our results indicate that irradiation at 10–15 Gy enhanced plant growth as compared to non-irradiated wheat, while at high doses (>20 Gy) a significant decrease in wheat height was recorded. APX and CAT transcript levels were higher in plant irradiated at 12.5 Gy than in the controls. Also, the enzyme activities of APX and CAT and POD were increased by 12.5 Gy gamma irradiation. Chronic irradiation caused an increase in the total anthocyanin content. To assess whether anthocyanin biosynthesis-related genes were involved in the response to chronic gamma irradiation in wheat plants, we examined their expression under different doses of gamma rays. Levels of F3H, DFR, ANS transcripts increased due to chronic gamma irradiation, whereas CHS and CHI expression decreased. Total anthocyanin contents significantly increased after chronic irradiation. Furthermore, Ultra Performance Liquid Chromatography (UPLC) revealed that cyanidin 3-glucoside, one of the anthocyanin compounds, rapidly increased in wheat plants after chronic gamma irradiation. This study demonstrated that the growth of wheat plants and markers of biochemical activity were negatively influenced by chronic gamma irradiation in a dose-dependent manner, although low-dose radiation showed stimulatory effects. Results from this study are very useful for future chronic gamma irradiation studies for the improvement of wheat varieties.

Keywords


1. Aebi, H. 1984. Catalase In Vitro. Method. Enzymol., 105: 121-126.
2. Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein Dye Binding. Anal. Biochem., 72: 248-254.
3. Calabrese, E. J. 2002. Hormesis: Changing View of the Dose-Response, a Personal Account of the History and Current Status. Mutat. Res. Rev. Mutat. Res., 511: 181-189.
4. Chakravarty, B. and Sen, S. 2001. Enhancement of Regeneration Potential and Variability by γ-Irradiation in Cultured Cells of Scilla indica. Biol. Plant., 44:189-193.
5. Chance, B. and Maehly, A. C. 1955. Assay of catalase and peroxidase. Method. Enzymol., 2: 764-775.
6. Chen, X. Q., Nagao, N., Itani, T. and Irifune, K. 2012. Anti-Oxidative Analysis, and Identification and Quantification of Anthocyanin Pigments in Different Colored Rice. Food Chem., 135: 2783-2788.
7. Dao, T., Linthorst, H. and Verpoorte, R. 2011. Chalcone Synthase and Its Functions in Plant Resistance. Phytochem. Rev., 10: 397-412.
8. El-Beltagi, H. S., Ahmed, O. K. and El-Desouky, W. 2011. Effect of Low Doses γ-Irradiation on Oxidative Stress and Secondary Metabolites Production of Rosemary (Rosmarinus officinalis L.) Callus Culture. Radiat. Phys. Chem., 80: 968-976.
9. Giannopolitis, C. N. and Ries, S. K. 1977. Superoxide Dismutase I. Occurrence in Higher Plants. Plant Physiol., 59: 309-314.
10. Gill, S. S. and Tuteja, N. 2010. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem., 48:909-930.
11. Gou, J. Y., Felippes, F. F., Liu, C. J., Weigel, D. and Wang, J. W. 2011. Negative Regulation of Anthocyanin Biosynthesis in Arabidopsis by a miR156-Targeted SPL Transcription Factor. Plant Cell, 23: 1512-1522.
12. Hong, M. J., Kim, J., Yoon, Y. H., Kim, S. H., Ahn, J., Jeong, I. Y., Kang, S., Seo, Y. W. and Kim, D. S. 2014. The Effects of Chronic Gamma Irradiation on Oxidative Stress Response and the Expression of Anthocyanin Biosynthesis-Related Genes in Wheat (Triticum aestivum). Int. J. Radiat. Biol., 90:1218-1228.
13. Hou, Z., Qin, P., Zhang, Y., Cui, S. and Ren, G. 2013. Identification of Anthocyanins Isolated from Black Rice (Oryza sativa L.) and Their Degradation Kinetics. Food Res. Int., 50: 691-697.
14. Kim, J., Baek, M., Chung, B. Y., Wi, S. G. and Kim, J. 2004. Alterations in the Photosynthetic Pigments and Antioxidant Machineries of Red Pepper (Capsicum annuum L.) Seedlings from Gamma-Irradiated Seeds. J. Plant Biol., 47: 314-321.
15. Kovalchuk, O., Arkhipov, A., Barylyak, I., Karachov, I., Titov, V., Hohn, B. and Kovalchuk, I. 2000. Plants Experiencing Chronic Internal Exposure to Ionizing Radiation Exhibit Higher Frequency of Homologous Recombination than Acutely Irradiated Plants. Mutat. Res. Fund. Mol. M., 449: 47-56.
16. Kovalchuk, O., Burke, P., Arkhipov, A., Kuchma, N., James, S. J. and Kovalchuk, I. and Pogribny, I. 2003. Genome Hypermethylation in Pinus silvestris of Chernobyl: A Mechanism for Radiation Adaptation? Mutat. Res. Fund. Mol. M., 529: 13-20.
17. Lu, S., Wang, Z., Niu, Y., Chen, Y., Chen, H., Fan, Z., Lin, J., Yan, K., Guo, Z. and Li, H. 2009. Gamma-Ray Radiation Induced Dwarf Mutants of Turf-Type Bermudagrass. Plant Breed., 128: 205-209.
18. Mahamune, S. and Kothekar, V. 2011. Gamma Ray Induced Flower Colour and Seed Mutants in French Bean (Phaseolus vulgaris L.). Recent Res. Sci. Technol., 3: 33-35.
19. Mancinelli, A. L., Rossi, F. and Moroni, A. 1991. Cryptochrome, Phytochrome, and Anthocyanin Production. Plant Physiol., 96:1079-1085.
20. Melki, M. and Marouani, A. 2010. Effects of Gamma Rays Irradiation on Seed Germination and Growth of Hard Wheat. Environ. Chem. Lett., 8:307-310.
21. Mita, S., Murano, N., Akaike, M. and Nakamura, K. 1997. Mutants of Arabidopsis thaliana with Pleiotropic Effects on the Expression of the Gene for β-Amylase and on the Accumulation of Anthocyanin that Are Inducible by Sugars. Plant J., 11: 841-851.
22. Mittler, R. 2002. Oxidative Stress, Antioxidants and Stress Tolerance. Trend. Plant Sci., 7: 405-410.
23. Moghaddam, S. S., Jaafar, H., Ibrahim, R., Rahmat, A., Aziz, M. A. and Philip, E. 2011. Effects of Acute Gamma Irradiation on Physiological Traits and Flavonoid Accumulation of Centella asiatica. Mol., 16: 4994-5007.
24. Mol, J., Grotewold, E. and Koes, R. 1998. How Genes Paint Flowers and Seeds. Trend. Plant Sci., 3:212-217.
25. Moussa, H. 2011. Low Dose of Gamma Irradiation Enhanced Drought Tolerance in Soybean. Acta Agronomica Hung., 59: 1-12.
26. Nakano, Y. and Asada, K. 1981. Hydrogen Peroxide Is Scavenged by Ascorbate-Speicific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol., 22: 867-880.
27. Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M. and Lepiniec, L. 2000. The TT8 Gene Encodes a Basic Helix-Loop-Helix Domain Protein Required for Expression of DFR and BAN Genes in Arabidopsis siliques. Plant Cell, 12:1863-1878.
28. Nie, L., Wu, G. and Zhang, W. 2006. Correlations of mRNA Expression and Protein Abundance Affected by Multiple Sequence Features Related to Translational Efficiency in Desulfovibro vulgaris: A Quantitative Analysis. Genet., 174: 2229-2243.
29. Nishiguchi, M., Nanjo, T. and Yoshida, K. 2012. The Effects of Gamma Irradiation on Growth and Expression of Genes Encoding DNA Repair-Related Proteins in Lombardy Poplar (Populus nigra var. italica). J. Environ. Radioact., 109: 19-28.
30. Petrussa, E., Braidot, E., Zancani, M., Peresson, C., Bertolini, A., Patui, S. and Vianello, A. 2013. Plant Flavonoids—Biosynthesis, Transport and Involvement in Stress Responses. Int. J. Mol. Sci., 14: 14950-14973.
31. Preuss, S. B. and Britta, A. B. 2003. A DNA-Damage-Induced Cell Cycle Checkpoint in Arabidopsis. Genet., 164:323-334.
32. Shoji, K., Momonoi, K. and Tsuji, T. 2010. Alternative Expression of Vacuolar Iron Transporter and Ferritin Genes Leads to Blue/Purple Coloration of Flowers in Tulip cv. 'Murasakizuisho'. Plant Cell Physiol., 51: 215-224.
33. Syomov, A. B., Ptitsyna, S. N. and Sergeeva, S. A. 1992. Analysis of DNA Strand Break Induction and Repair in Plants from the Vicinity of Chernobyl. Sci. Total Environ., 112: 1-8.
34. Vandenhove, H., Vanhoudt, N., Cuypers, A., Van Hees, M., Wannijn, J. and Horemans, N. 2010. Life-Cycle Chronic Gamma Exposure of Arabidopsis thaliana Induces Growth Effects but No Discernable Effects on Oxidative Stress Pathways. Plant Physiol. Biochem., 48:778-786.
35. Welch, C. R., Wu, Q. and Simon, J. E. 2008. Recent Advances in Anthocyanin Analysis and Characterization. Curr. Anal. Chem., 4:75-101.
36. Wi, S. G., Chung, B. Y., Kim, J., Kim, J., Baek, M., Lee, J. and Kim, Y. S. 2007. Effects of Gamma Irradiation on Morphological Changes and Biological Responses in Plants. Micron, 38:553-564.
37. Wu, J., Wu, C., Lei, C., Baraoidan, M., Bordeos, A., Madamba, M., Suzette, R., Ramos-Pamplona, M., Mauleon, R. and Portugal, A. 2005. Chemical- and Irradiation-Induced Mutants of Indica Rice IR64 for Forward and Reverse Genetics. Plant Mol. Biol., 59: 85-97.
38. Zaka, R., Chenal, C. and Misset, M. 2004. Effects of Low Doses of Short-Term Gamma Irradiation on Growth and Development through Two Generations of Pisum sativum. Sci. Total Environ., 320:121-129.