AMMI Model to Assess Durum Wheat Genotypes in Multi-Environment Trials

Authors
1 GAP International Agricultural Research and Training Center, Diyarbakir, Turkey.
2 Department of Plant and Animal Production, Kiziltepe Vocational High School, MardinArtuklu University, Mardin, Turkey.
Abstract
The goal of this research was to assess the stability and yield performance of 150 durum wheat genotypes in multi-environment trials in two locations (Diyarbakir and Kiziltepe), in 2011-2012, and 2012-2013 growing seasons. The trials were designed by Lattice Experimental Design with two replications (incomplete block design). The AMMI (Additive Main Effects and Multiplicative Interaction) and GEI (Genotype×Environment Interaction) analysis were used in the study to estimate GEI effects on grain yield, because of plant breeders’ great interest in these models for breeding programs. AMMI evaluation indicated that genotypes made the most important contributions to treatments Sum of Squares (59.8%), environments (3.5%), and GEI (36.7%), respectively, suggesting that grain yield had been affected by environment. IPCA 1 and IPCA 2 axes (Principal Component) were significant as P< 0.01 and explained 63.8 and 36.2%, respectively. Results showed that Kiziltepe 2013 was more stable and high yielding, meanwhile Diyarbakir 2012 and Diyarbakir 2013 environments were unstable and low yielding. According to stability variance, usually the province lines were more productive and stable than some old cultivars and many landraces/genotypes. Moreover, genotype G24 was more effective in all environments. The GEI model according to AMMI analysis suggested that this genotype can be considered as a candidate, due to extensive adaptability and high performances in all environments.

Keywords


1. Ahmadi, J., Mohammadi, A. and Najafi Mirak, T. 2012. Targeting Promising Bread Wheat (Triticum aestivum L.) Lines for Cold Climate Growing Environments Using AMMI and SREG GGE Biplot Analyses. J. Agr. Sci. Tech., 14: 645-657.
2. Akter, A, Hassan, M. J., Kulsum, M. U., Islam, M. R., Hossain, K., Rahman, M. M. 2014. AMMI Biplot Analysis for Stability of Grain Yield in Hybrid Rice (Oryza sativa L.). J. Rice Res., 2: 126
3. Amallah, L., Taghouti, M., Rhrib, K., Gaboun, F. and Hassikou, R. 2014. Genetic Variability in Agro-Morphological and Quality Traits of Mediterranean Durum Wheat Landraces. Cereal Res. Communicat., 43: 123–132.
4. Anonymous 1. 2012. Bulgur Sector Report. Silkroad Development Agency, Gaziantep, Turkey, BSR.
5. Anonymous 2. 2015. Turkey Statistik Foundation. Tuik.
6. Asfaw, A., Alemayehu, F., Gurum, F. and Atnaf, M. 2009. AMMI and SREG GGE Biplot Analysis for Matching Varieties onto Soybean Production Environments in Ethiopia. Sci. Res. Essay, 4(11): 1322-1330.
7. Baker, R. J. 1988. Test for Crossover Genotype-Environmental Interactions. Can. J. Plant Sci., 68: 405- 410.
8. Bantayehu, M., Esmael, J. and Awoke, Y. 2013. Additive Main Effect and Multiplicative Interaction Analysis and Clustering of Environments and Genotypes in Malting Barley. Afr. J. Agric. Res., 8(18): 1896-1904.
9. Baraki, F., Tsehay, Y. and Abay, F. 2014. AMMI Analysis of Genotype×Environment Interaction and Stability of Sesame Genotypes in Northern Ethiopia. Asian J. Plant Sci., 13: 178-183.
10. Becker, H. C. and Leon, J. 1988. Stability Analysis in Plant Breeding. P. Breed., 101: 1-23.
11. Becker, H. C. 1981. Correlations among Some Statistical Measures of Phenotypic Stability. Euphytica, 30: 835-840.
12. Beleggia, R., Platani, C., Nigro, F., De Vita, P., Cattivelli, L. and Papa, R. 2013. Effect of Genotype, Environment and Genotype-by-Environment Interaction on Metabolite Profiling in Durum Wheat (Triticum durum Desf.) Grain. J. Cereal Sci., 57: 183–192. doi:10.1016/j.jcs.2012.09.004.
13. Fantie, M., Assefa, A. and Belete, K. 2013. AMMI Analysis of Yield Performance and Stability of Finger Millet Genotypes across Different Environments. World J. Agric. Sci., 9(3): 231-237.
14. Farshadfar, E. and Sutka, J. 2006. Biplot Aanalysis of Genotype-Environment Interaction in Durum Wheat Using the AMMI Model. Acta Agri. Hungarica, 54: 459-467.
15. Flores, F., Moreno, M. T. and Cubero, J.I. 1998. A Comparison of Univariate and Multivariate Methods to GxE Interaction. Field Crop. Res., 56: 271-286
16. Freeman, G. H. 1985.The Analysis and Interpretation of Interaction. J. Appl. Stat., 12: 3-10.
17. Gauch, H. G. 1988. Model Selection and Validation for Yield Trials with Interaction. Biometric., 44: 705-715.
18. Gauch, H. G. 2006. Statistical Analysis of Yield Trials by AMMI and GGE. Crop Sci., 46: 1488-1500.
19. Gauch, H. G., Piepho, H. P. and Annichiarico, P. 2008. Statistical Analysis of Yield Trials by AMMI and GGE. Further Considerations. Crop Sci., 48: 866-889.
20. Gauch, H. G. and Zobel, R. W. 1996. AMMI Analyses of Yield Trails. Genotype by Environment Interaction. GRC, Paton, Florida, PP. 85-122.
21. Hagos, G. H. and Abay, F. 2013. AMMI and GGE Biplot Analysis of Bread Wheat Genotypes in the Northern Part of Ethiopia. J. Plant Breed. Genet., 1(1): 12-18.
22. Ilker, E., Geren, H., Unsal, R., Sevim, I.A., Tonk, F. and Tosun, M. 2011. AMMI-Biplot Analyses of Yield Performances of Bread Wheat Cultivars Grown at Different Locations. Turk. J. Field Crop., 16(1): 64-68.
23. Islam, M. R., Anisuzzaman, M., Khatun, H., Sharma, N., Islam, Z., Akter, A., Parta, S. Biswas, 2014. AMMI Analysis of Yield Performance and Stability of Rice Genotypes across Different Haor Areas. Eco. Friend. Agril. J., 7(02): 20-24.
24. Jaradat, A. A. 2011. Wheat landraces: Genetic Resources for Sustenance and Sustainability. USDA-ARS, 803 Iowa Ave., Morris, MN 56267 USA.
25. Kadi, Z., Adjel, F. and Bouzerzour, H. 2010. Analysis of the Genotype×Environment Interaction of Barley Grain yield (Hordeum Vulgare L.) Under Semi Arid Conditions. Adv. Environ. Biol., 4(1): 34:40.
26. Karimizadeh, R., Mohammadi, M., Sabahghnia, N., Shefazadeh, M. K. and Porualhossini, J. 2012. Univariate Stability Analysis Methods for Determining Genotype×Environment Interaction of Durum Wheat Grain Yield. Afr. J. Biotechnol., 11: 2563-2573
27. Kendal, E., Tekdal, S., Aktaş, H. and Karaman, H., 2012. Comparison of Some Local and Italy Durum Wheat Varieties in Terms of Yield and Quality Parameters in Irrigation Conditions of Diyarbakir and Adiyaman. J. Agr. Fac. Uludag Univ., 2(26): 1-14.
28. Kendal, E. 2015. Determination of Relationship between Chlorophyll and Other Features in Durum Wheat (Triticum turgidum L. var. durum) Using SPAD and Biplot Analyses. J. Agr. Sci. Tech., 17(Suppl.): 1873-1886.
29. Kendal, E. and Tekdal, S. 2016. Application of AMMI Model for Evolution Spring Barley Genotypes in Multi-Environment Trials. Bangladesh J. Bot., 45(3): 613-620.
30. Kendal, E. and Sayar, M. S. 2016. The Stability of Some Spring Triticale Genotypes Using Biplot Analysis. J. Anim. Plant Sci., 26(3): 754-765.
31. Kendal, E., Sayar, M. S., Tekdal, S., Aktas, H. and Karaman, M. 2016. Assessment of the Impact of Ecological Factors on Yield and Quality Parameters in Triticale Using GGE Biplot and AMMI Analysis. Pak. J. Bot., 48(5): 1903-1913.
32. Kilic, H. 2014. Additive Main Effect and Multiplicative Interactions (AMMI) Analysis of Grain Yield in Barley Genotypes across Environments. J. Agr. Sci., 20: 337-344.
33. Li, W., Yan, Z. H., Wei, Y. M., Lan, X. L. and Zheng, Y. L. 2006. Evaluation of Genotype×Environment Interactions in Chinese Spring Wheat by the AMMI Model, Correlation and Path Analysis. J. Agron. Crop Sci., 192: 221-227.
34. McLaren, C. G. and Chaudary, C. 1994. Use of Additive Main Effects and Multiplicative Interaction Models to Analysis Multi-Location Rice Variety Trials. Paper Presented at the FCSSP Conference, Puetron Princesa, Palawan, Philippines.
35. Mehari, M., Alamerew, S. and Lakew, B. 2014. Genotype×Environment Interaction and Yield Stability of Malt Barley Genotypes Evaluated in Tigray, Ethiopia Using the AMMI analysis. Asian J. Plant Sci., 13(2): 73-79.
36. Miranda, V. G., Souza, L. V., Guimaraes, M. L. J., Namorato, H., Oliveria, L. R. and Soare, M. O. 2009. Multivariate Analysis of Genotype×Environment Interaction of Popcorn. Pesg. Agropec. Bras. Brasilia, 44(1): 45-50
37. Mirosavlievic, M. N., Przuli, N. and Canak, P. 2014. Analysis of New Experimental Barley Genotype Performance for Grain Yield Using AMMI Biplot. Selekcıja I Semenarstvo, 1.
38. Mirosavlievic, M. N., Przulj, N., Bocanski Stanisavlievic, D. and Mitrovic, B. 2014. The Application of AMMI Model for Barley Cultivars Evaluation in Multi-Year Trials. Genetika, 46(2): 445-454.
39. Mohammadi, M., Karimizadeh, R., Noorinia, A. A., Ghojogh, H., Hosseinpour, T., Khalilzadeh, G. R., Mehraban, A., Roustaii, M. and Hasanpor Hosni, M. 2013. Analysis of Yield Stability in Multi-Environment Trials of Barley (Hordeum vulgare L.) Genotypes Using AMMI Model. Current Opinion in Agriculture Curr. Opin. Agric., 2(1): 20-24.
40. Mortazavian, S. M. M., Nikkhah, H. R., Hassani, F. A., Sharif-al-Hosseini, M., Taheri, M. and Mahlooji, M. 2014. GGE Biplot and AMMI Analysis of Yield Performance of Barley Genotypes across Different Environments in Iran. J. Agr. Sci. Tech., 16: 609-622.
41. Mukherjee, A. K., Mohapatra, N. K., Bose, L. K., Jambhulkar, N. N. and Nayak, P. 2013. Additive Main Effects and Multiplicative Interaction (AMMI) Analysis of GxE Interactions in Rice-blast Pathosystem to Identify Stable Resistant Genotypes. Afr. J. Agric. Res., 8(44): 5492-5507.
42. Nouri Rad, M. R., Abdulkadir, M., Rafii, M. Y., Hawa, Z. E. J., Naghavi, M. R., Ahmadi, F. 2013. Genotype×Environment Interaction by AMMI and GGE Biplot Analysis in Three Consecutive Generations of Wheat (Triticum aestivum) Under Normal and Drought Stress Conditions. Aust. J. Crop Sci., 7(7): 956-961.
43. Purchase, J. L. 1997. Parametric Analysis to Describe G×E Interaction and Yield Stability in Winter Wheat. PhD. Thesis, Department of Agronomy, Faculty of Agriculture, University of the Orange Free State, Bloemfontein, Shout Africa.
44. Rezene, Y. 2014. GGE and AMMI Biplot Analysis for Field Pea Yield Stability in SNNPR state Ethiopia. Int. J. Sust. Agr. Res., 1(1): 28-38
45. Rharrabti, Y., Royo, C., Villegas, D., Aparicio, N. and Garcı́a del Moral, L. 2003. Durum Wheat Quality in Mediterranean Environments. I. Quality Expression under Different Zones, Latitudes and Water Regimes across Spain. Field Crop. Res., 80: 123–131.
46. Sabaghnia, N., Dehghani, H., Alizadeh, B. and Mohghaddam, M. 2010. Genetic Analysis of Oil Yield, Seed Yield, and Yield Components in Rapeseed Using Additive Main Effect and Multiplicative Interaction Biplots. Agron. J., 102: 1361-1368.
47. Sabaghnia, N., Karimizadeh, R. and Mohammadi, M. 2012b. Grain Yield Stability Analysis of Lentil Genotypes by Additive Main Effect and Multiplicative Interactions Model. YYU J. Agric. Sci., 22: 155-164.
48. Sabaghnia, N., Karimizadeh, R. and Mohammadi, M. 2012a. Model Selection in AMMI Model in Durum Wheat. Genetika, 44: 325-339.
49. Sayar, M. S. and Han, Y. 2015. Determination of Seed Yield and Yield Components of Grasspea (Lathyrus sativus L.) Lines and Evaluations Using GGE Biplot Analysis Method. Tarım Bilimleri Dergisi. J. Agric. Sci., 21: 78-92.
50. Sayar, M. S. and Han, Y. 2016. Forage Yield Performance of Forage Pea (Pisum sativum spp. arvense L.) Genotypes and Assessments Using GGE Biplot Analysis. J. Agr. Sci. Tech., 18: 1621-1634.
51. Tarakanovas, P. and Ruzgas, V. 2006. Additive Main Effect and Multiplicative Interaction Analysis of Grain yield of Wheat Varieties in Lithuania. Agron. Res., 4(1): 91-98.
52. Vargas, M. and Crossa, J. 2000. The AMMI Analysis and Graphing the Biplot. Biometrics and Statistics Unit, CIMMYT.
53. Yan, W. and Kang, M. 2003. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. CRC Press, Boca Raton, FL, 288 PP.
54. Yan, W. and Hunt, L. A. 2001. Interpretation of Genotype x Environment Interaction for Winter Wheat Yield in Ontario. Crop Sci., 41: 19-25
55. Yan, W., Kang, M. S., Ma, B., Woods, S. and Cornelius, P. L. 2007. GGE Biplot vs.AMMI Analysis of Genotype by Environment Data. Crop Sci., 47: 643-655.
56. Yan, W. and Rajcanw, I. 2002. Biplot Analysis of Test Sites and Trait Relations of Soybean in Ontario. Crop Sci., 42: 11-20.