Phytochemical Variations in Different Tomato Genotypes Grown in Eastern Indian Indo-Gangetic Regions

Authors
1 Department of Horticulture (Vegetable & Floriculture), Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India.
2 Department of Horticulture, Banaras Hindu University (U.P.), India.
Abstract
In this study, fifteen commercial varieties, nine exotic genotypes, and three wild species of tomato grown in Eastern India were analyzed for variations in different phytochemicals viz. ascorbic acid, lycopene, total carotenoids, total phenolics content and total antioxidant capacity. Selected genotypes showed significant differences with respect to phytochemical composition. Among antioxidant property parameter, ascorbic acid content ranged between 12.62 to 76.15 mg 100 g-1 of Fresh Weight (FW), whereas, the total phenolic content and total antioxidant capacity varied from 41.10 to 139.59 mg GAE 100 g-1 of FW and 1.16 to 4.52 µmol Trolex Equivalent (TE) g-1 of FW, respectively. Among carotenoid parameters, lycopene and total carotenoids content in whole tomato fruit ranged between 0.47 to 5.48 and 1.14 to 5.79 mg 100 g-1 of FW, respectively. Interestingly, it was found that, among the evaluated genotypes, Exotic Collection (EC lines) showed significant enriched amount of these phytochemicals. Results indicated that the maximum ascorbic acid (76.15 mg 100 g-1 FW), total phenolics content (139.59 mg GAE 100 g-1 of FW), and total antioxidant capacity (4.52 µmol TE g-1 of FW) was highest in exotic collection EC 528372, while, lycopene (5.48 mg 100 g-1 of FW) and total carotenoids content (5.79 mg 100 g-1 of FW) were recorded highest in cultivar Rio Grande. Thus, this group of screened genotypes consisting of phytochemical rich wild species and exotic collection can be further used for improvement of functional quality of tomato in future breeding programs of India and the Indo Gangetic region.

Keywords


1. Abebe, Z., Tola, Y. B. and Mohammed, A. 2017. Effects of Edible Coating Materials and Stages of Maturity at Harvest on Storage Life and Quality of Tomato (Lycopersicon Esculentum Mill.) Fruits. Afr. J. Agri. Res. 12(8): 550-565.
2. Abuajah, C. I., Ogbonna, A. C. and Osuji, C. M. 2015. Functional Components and Medicinal Properties of Food: A Review. J. Food Sci. Technol., 52(5): 2522-2529.
3. Alezandro, M. R., Granato, D. and Genovese, M. I. 2013. Jaboticaba (Myrciaria jaboticaba (Vell.) Berg), a Brazilian Grape-Like Fruit, Improves Plasma Lipid Profile in Streptozotocin Mediated Oxidative Stress in Diabetic Rats. Food Res. Int., 54: 650-659.
4. Alfadda, A. A. and Sallam, R. M. 2012. Reactive Oxygen Species in Health and Disease. J. Bio. Med. Biotech. 12:1-14.
5. Al-Jibouri, H. A., Miller, P. A. and Robinson, H. F.1958. Genetic and Environmental Variances and Covariances in Upland Cotton Cross of Interspecific Origin. Agron. J., 50: 633-637.
6. AOAC. 2012. Official Methods of Analysis. Association of Official Analytical Chemists, Gaithersburg, MD.
7. Apak, R., Guclu, K., Ozynrek, M. and Celik, S. E. 2008. Mechanism of Antioxidant Capacity Assays and the CUPRAC (Cupric Ion Reducing Antioxidant Capacity) Assay. Microchem. Acta, 160: 413-419.
8. Burton, G. W. 1952. Quantitative Inheritance in Grasses. Proc. 6th Int. Grassland Cong., 1: 277-283.
9. Burton, G. W. and Devane, E. W. 1953. Estimating Heritability in All Fescue (Fescutaca arundinancea) from Replicated Clonal Materials. Agro. J., 45: 478-481.
10. Dar, R. A. and Sharma, J. P. 2011. Genetic Variability Studies of Yield and Quality Traits in Tomato (Solanum lycopersicum L.). Int. J. Plant Breed. Gen., 5(2): 168-174.
11. Dillingham, B. L. and Rao, A. V. 2009. Biologically Active Lycopene in Human Health. Int. J. Naturo. Med., 4: 23-27.
12. Di Mascio, P., Kaiser, S. and Sies, H. 1989. Lycopene as the Most Effective Biological Carotenoid Singlet Oxygen Quencher. Arch. Biochem. Biophy., 274: 532-538.
13. Favati, F., Lovelli, S., Galgano, F., Miccolis, V., Di Tommaso, T. and Candido, V. 2009. Processing Tomato Quality as Affected by Irrigation Scheduling. Sci. Hort., 122(4): 562-571.
14. Frusciante, L., Carli, P., Ercolano, M. R., Pernice, R., Matteo, A. D., Fogliano, V. and Pellegrini, N. 2007. Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res., 51: 609-617.
15. Garcia, E. and Barrett, D. M. 2006. Evaluation of Processing Tomatoes from Two Consecutive Growing Seasons: Quality Attributes Peelability and Yield. J. Food Process. Preserv., 30: 20-36.
16. George, B., Kaur, C., Khurdiya, D. S. and Kapoor, H. C. 2004. Antioxidants in Tomato (Lycopersium esculentum) as a Function of Genotype. Food Chem., 84(1): 45-51.
17. Giovannucci, E. 1999. Tomatoes, Tomato-Based Products, Lycopene and Cancer: Review of Epidemiologic Literature. J. Nat. Cancer Inst., 91: 317–331.
18. Gonzalez-Cebrino, F., Lozano, M., Ayuso, M. C., Bernalte, M.J., Vidal-Aragon, M. C. and Gonzalez-Gomez, D. 2011. Characterization of Traditional Tomato Varieties Grown in Organic Conditions. Spanish J. Agr. Res., 9(2): 444-452.
19. Halliwell, B. 1991. Reactive Oxygen Species in Living Systems: Source, Biochemistry and Role in Human Disease. Amer. J. Med., 91(3): 14-22.
20. Ilahya, R., Hdiderb, C., Lenuccic, M. S, Tlili, I. and Dalessandroc, G. 2011. Phytochemical Composition and Antioxidant Activity of High-Lycopene Tomato (Solanum lycopersicum L.) Cultivars Grown in Southern Italy. Sci. Hort., 127: 255-261.
21. Johnson, W. W., Robinson, H. F. and Comstock, R. E. 1955. Genotypic and Phenotypic Correlation in Soybeans and Their Implications in Selection. Agron. J., 47: 477-482.
22. Kaur, C., Bijoj, G., Deepa, N. and Singh, H. C. 2004. Antioxidant Status of Fresh and Processed Tomato. J. Food Sci. Technol., 40(5): 479-486.
23. Kaur, C., Walia, S., Nagal, S., Walia, S., Singh, J., Singh, B. B., Saha, S., Singh, B., Kalia, P., Jaggi, S. and Sarika, J., 2013. Functional Quality and Antioxidant Composition of Selected Tomato (Solanum lycopersicum L.) Cultivars Grown in Northern India. Food Sci. Technol., 50: 139-145.
24. Lee, H. S. 2001. Characterization of Carotenoids in Juice of Red Navel Orange (Cara Cara). J. Agri. Food Chem., 49: 2563–2568.
25. Lush, J. L. 1949. Heritability of Quantitative Characters in Farm Animals. Hereditas, 35: 356-375.
26. Macedo, L. F. L., Rogero, M. M., Guimarães, J. P., Granato, D., Lobato, L. P., Castro, I. A. 2013. Effect of Red Wines with Different In Vitro Antioxidant Activity on Oxidative Stress of High-Fat Diet Rats. Food Chem., 137: 122–129.
27. Martínez-Valverde, I., Periago, M. J., Provan, G. and Chesson, A. 2002. Phenolic Compounds, Lycopene and Antioxidant Activity in Commercial Varieties of Tomato (Lycopersicum esculentum). J. Sci. Food Agric., 82: 323-330.
28. Navarro-González, I., García-Valverde, V., García-Alonso, J. and Periago, M. J. 2011. Chemical Profile, Functional and Antioxidant Properties of Tomato Peel Fiber. Food Res. Int., 44: 1528-1535.
29. Neha, P., Solankey, S. S., Vati, L. and Chattopadhyay, T. 2016. Molecular Screening of Tomato (Solanum lycopersicum L.) Genotypes for Resistance Alleles against Important Biotic Stresses J. Appl. Nat. Sci., 8(3): 1654-1658.
30. Neha, P., Solankey, S. S., Akhtar, S. and Kumari, M. 2016a. Assessment of Genetic Variation in Cultivated and Wild Tomato Genotypes for Yield and Quality Contributing Traits. New Agri., 27(2): 1–6.
31. Nguyen, M. L. and Schwartz, S. J. 1999. Lycopene: Chemical and Biological Properties. Food Tech., 53(2): 38-45.
32. Odriozola-serrano, I., Soliva-fortuny, R., Gimeno-ano, V. and Martin-Belloso, O. 2008. Modeling Changes in Health-Related Compounds of Tomato Juice Treated by High-Intensity Pulsed Electric Fields. J. Food Eng., 89: 210-216.
33. Prasad, K. and Sharma, R. R. 2016. Screening of Mango Genotypes for the Incidence of Lenticel Browning, a New Postharvest Problem. Indian J. Agric Sci., 86(9): 1169–71.
34. Prasad, K., Sharma, R. R. and Srivastava, M. 2016a. Postharvest Treatment of Antioxidant Reduces Lenticel Browning and Improves Cosmetic Appeal of Mango (Mangifera indica L.) Fruits without Impairing Quality. J. Food Sci. Technol., 53(7): 2995–3001.
35. Prasad, K., Sharma, R. R., Srivastav, M. and Sethi, S. 2016b. Effect of Hot Water Treatment on the Incidence of Lenticel Browning and Quality of Mango Fruits. Indian J. Hort., 73(4): 576-581.
36. Raiola, A., Rigano, M. M., Calafiore, R., Frusciante, L. and Barone, A. 2014. Enhancing the Health-Promoting Effects of Tomato Fruit for Biofortified Food. Mediators Inflamm., Mediators Inflamm. 14:1-16.
37. Roy, S. K. 1973. A Simple and Rapid Method for Estimation of Total Carotenoids Pigments in Mango. J. Food Sci. Technol., 10: 45.
38. Sahlin, E., Savage, G. P. and Lister, C. E. 2004. Investigation of the Antioxidant Properties of Tomatoes after Processing. J. Food Comp. Anal., 17: 635-647.
39. Singh, M., Walia, S., Kaur, C., Kumar, R. and Joshi, S. 2010. Processing Characteristics of Tomato (Solanum lycopersicum) Cultivars. Indian J. Agric. Sci., 80: 174-176.
40. Singleton, V. L., Orthofer, R. and Lamuela-Ranventos, R. M. 1999. Analysis of Total Phenols Other Oxidation Substrates and Antioxidants by Means of Folic-Ciocalteu Reagent. Method. Enzymol., 299: 152-178.
41. Thamburaj, S. and Singh, N. 2013. Tomato. In: “Vegetables, Tuber Crops and Spices”. ICAR, Publishers, New Delhi, PP. 10-28.