Production and Partial Characterization of a Glycoprotein Bioemulsifier Produced by Lactobacillus plantarum subsp. plantarum PTCC 1896

Authors
Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran.
Abstract
Given the growing interest in the production of new and low cost bioemulsifiers, the rice and wheat bran and straw were investigated in this study for the production of bioemulsifier by Lactobacillus plantarum subsp. plantarum PTCC 1896 (probiotic). The strain produced bioemulsifier only in the rice bran hydrolysate medium. The bioemulsifier amount reached around 0.7 g L-1 for 72 hours of fermentation. The new biomolecule was extracted, purified, and its structural and thermal properties were evaluated. The functional groups and the structure of the molecule were revealed by GPC, FT-IR, 1HNMR and 13CNMR techniques. The bioemulsifier was a water soluble extracellular high molecular weight (>107 Da) α-glucan (81.74%) bound with protein (18.18%). Thermal behavior was studied using DSC and TG analysis. Thermal analysis showed the bioemulsifier broke down above 211.74°C, and the melting point was 182.0°C with the enthalpy value of 101.7 J g-1. These results might provide incentives for the industrial production of the biodegradable and safe bioemulsifier introduced in this study, which seems to offer potential applications in the food and medical industries.

Keywords


1. Beltrani, T., Chiavarini, S., Cicero, D. O., Grimaldi, M., Ruggeri, C., Tamburini, E. and Cremisini, C. 2015. Chemical Characterization and Surface Properties of a New Bioemulsifier Produced by Pedobacter sp. strain MCC-Z. Int. J. Biol. Macromol., 72: 1090-1096.
2. Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem., 72: 248-254.
3. Calvo, C., Martínez-Checa, F., Toledo, F., Porcel, J. and Quesada, E. 2002. Characteristics of Bioemulsifiers Synthesized in Crude Oil Media by Halomonas eurihalina and Their Effectiveness in the Isolation of Bacteria Able to Grow in the Presence of Hydrocarbons. Appl. Microbiol. Biotechnol., 60: 347-351.
4. Campos, J. M., Stamford, T. L. M. and Sarubbo, L. A. 2014. Production of a Bioemulsifier with Potential Application in the Food Industry. Appl. Biochem. Biotechnol., 172: 3234-3252.
5. Cirigliano, M. C. and Carman, G. M. 1985. Purification and Characterization of Liposan, a Bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol., 50: 846-850.
6. Cooper, D. 1986. Biosurfactants. Microbiol. Sci., 3: 145.
7. Dikit, P., Methacanon, P., Visessanguan, W., H-kittikun, A. and Maneerat, S. 2010. Characterization of an Unexpected Bioemulsifier from Spent Yeast Obtained from Thai Traditional Liquor Distillation. Int. J. Biol. Macromol., 47: 465-470.
8. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. 1956. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem., 28: 350-356.
9. FAOSTAT, 2012. p. http://faostat.fao.org/site/339/default.aspx.
10. Gonzaga, M. L. C., Ricardo, N. M. P. S., Heatley, F. and Soares, S. D. A. 2005. Isolation and Characterization of Polysaccharides from Agaricus blazei Murill. Carbohydr. Polym., 60: 43-49.
11. Gudina, E. J., Teixeira, J. A. and Rodrigues, L. R. 2010. Isolation and Functional Characterization of a Biosurfactant Produced by Lactobacillus paracasei. Colloids Surf B Biointerfaces, 76: 298-304.
12. 10. Jain, R. M., Mody, K., Joshi, N., Mishra, A. and Jha, B. 2013. Effect of Unconventional Carbon Sources on Biosurfactant Production and Its Application in Bioremediation. Int. J. Biol. Macromol., 62: 52-58.
13. Jain, R. M., Mody, K., Mishra, A. and Jha, B. 2012. Isolation and Structural Characterization of Biosurfactant Produced by an Alkaliphilic Bacterium Cronobacter sakazakii Isolated from Oil Contaminated Wastewater. Carbohydr. Polym., 87: 2320-2326.
14. Li, Z., Han, L., Ji, Y., Wang, X. and Tan, T. 2010. Fermentative Production of L-Lactic Acid from Hydrolysate of Wheat Bran by Lactobacillus rhamnosus. Biochem. Eng. J., 49: 138-142.
15. Markande, A. R., Acharya, S. R. and Nerurkar, A. S. 2013. Physicochemical Characterization of a Thermostable Glycoprotein Bioemulsifier from Solibacillus silvestris AM1. Process Biochem., 48: 1800-1808.
16. Miao, M., Ma, Y., Huang, C., Jiang, B., Cui, S. W. and Zhang, T. 2015a. Physicochemical Properties of a Water Soluble Extracellular Homopolysaccharide from Lactobacillus reuteri SK24.003. Carbohydr. Polym., 131, 377-383.
17. Miao, M., Ma, Y., Jiang, B., Cui, S.W., Wu, S. and Zhang, T. 2015b. Structural Elucidation and In Vitro Fermentation of Extracellular α-d-Glucan from Lactobacillus reuteri SK24.003. Bioact. Carbohydr. Diet. Fibre, 6: 109-116.
18. Miller, G. L. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem., 31: 426-428.
19. Mirlohi, M., Soleimanian-Zad, S., Dokhani, S., Sheikh-Zeinodin, M. and Abghary, A. 2009. Investigation of Acid and Bile Tolerance of Native Lactobacilli Isolated from Fecal Samples and Commercial Probiotics by Growth and Survival Studies. Iran. J. Biotech., 7: 233-240.
20. Moldes, A. B., Torrado, A. M., Barral, M. T. and Domínguez, J. M. 2007. Evaluation of Biosurfactant Production from Various Agricultural Residues by Lactobacillus pentosus. J. Agric. Food Chem., 55: 4481-4486.
21. Navon-Venezia, S., Zosim, Z., Gottlieb, A., Legmann, R., Carmeli, S., Ron, E. Z. and Rosenberg, E. 1995. Alasan, a New Bioemulsifier from Acinetobacter radioresistens. Appl. Environ. Microbiol., 61: 3240-3244.
22. Paraszkiewicz, K., Kanwal, A. and Długoński, J. 2002. Emulsifier Production by Steroid Transforming Filamentous Fungus Curvularia lunata. Growth and Product Characterization. J. Biotechnol., 92: 287-294.
23. Portilla-Rivera, O., Torrado, A., Domínguez, J. M. and Moldes, A. B. 2010. Stabilization of Kerosene/Water Emulsions Using Bioemulsifiers Obtained by Fermentation of Hemicellulosic Sugars with Lactobacillus pentosus. J. Agric. Food Chem., 58: 10162–10168.
24. Saimmai, A., Rukadee, O., Onlamool, T., Sobhon, V. and Maneerat, S. 2012. Characterization and Phylogenetic Analysis of Microbial Surface Active Compound-Producing Bacteria. Appl. Biochem. Biotech., 168: 1003-1018.
25. Shao, L., Wu, Z., Zhang, H., Chen, W., Ai, L. and Guo, B. 2014. Partial Characterization and Immunostimulatory Activity of Exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydr. Polym., 107: 51-56.
26. Thavasi, R., Jayalakshmi, S. and Banat, I. M. 2011. Application of Biosurfactant Produced from Peanut Oil Cake by Lactobacillus delbrueckii in Biodegradation of Crude Oil. Bioresour. Technol., 102: 3366-3372.
27. Toledo, F. L., Gonzalez-Lopez, J. and Calvo, C. 2008. Production of Bioemulsifier by Bacillus subtilis, Alcaligenes faecalis and Enterobacter Species in Liquid Culture. Bioresour. Technol., 99: 8470-8475.
28. Willumsen, P. A. and Karlson, U., 1996. Screening of Bacteria, Isolated from PAH-Contaminated Soils, for Production of Biosurfactants and Bioemulsifiers. Biodegradation, 7: 415-423.
29. Yadav, K. K., Mandal, A. K., Sen, I. K., Chakraborti, S., Islam, S. S. and Chakraborty, R. 2012. Flocculating Property of Extracellular Polymeric Substances Produced by a Biofilm-Forming Bacterium Acinetobacter junii BB1A. Appl. Biochem. Biotechnol., 168: 1621-1634.
30. Zamani-Zadeh, M., Soleimanian-Zad, S. and Sheikh-Zeinoddin, M. 2013. Biocontrol of Gray Mold Disease on Strawberry Fruit by Integration of Lactobacillus plantarum A7 with Ajwain and Cinnamon Essential Oils. J. Food Sci., 78: M1582-M1588.