Morphological and Molecular Identification and PCR Amplification to Determine the Toxigenic Potential of Fusarium graminearum Species Complex (FGSC) Isolated from Wild Grasses in Iran

Authors
Department of Biology, Faculty of Science, Razi University, Kermanshah, Islamic Republic of Iran.
Abstract
In order to explore biodiversity of Fusarium species associated with the inflorescences of gramineus weeds, heads and inflorescences were collected from wild grasses in west of Iran. Sixty samples, mostly from infected spikes were collected from different sites of western Iran. Nine species from 9 tribes of the Poaceae family were identified based on pollen morphology using light microscopy and scanning electron microscope. Sixty Fusarium isolates were obtained from diseased spikes and identified into five species F. graminearum (40%), F. asiaticum (20%), F. acuminatum (20%), F. equiseti (10%), and F. proliferatum (10%). The identification of the members of F. Graminearum Species Complex (FGSC) was confirmed molecularly using Fg16F/Fg16R primers. F. asiaticum isolates were distinguished from other FGSC using Fg6CTPSf177/Fg16R primers. The phylogenetic trees based on Translation Elongation Factor-1α (TEF-1α) dataset clearly separated all morphological taxa. PCR-based detection of mycotoxin-synthesis-pathway gene was also used to determine the potential to produce trichothecenes (DON and NIV). Among 60 tested isolates, 16 isolates (27%) belonged to DON chemotype and 10 isolates (17%) were NIV chemotype. These results show that DON was the most common chemotype in western Iran. To our knowledge, this is the first report on molecular identification of Fusarium species isolated from poaceouswild grasses in Iran.

Keywords


1. Akinsanmi, O. A., Mitter, V., Simpfendorfer, S., Backhouse, D. and Chakraborty, S. 2003. Identity and Pathogenicity of Fusarium spp. Isolated from Wheat Fields in Queensland and Northern New South Wales. Aust. J. Agr. Res., 55: 97-107.
2. Badaeva, E. D., Amosova, A. V., Muravenko, O. V., Samatadze, T. E., Chikida, N. N., Zelenin, A.V., Friebe, B. and Gill, B. S. 2002. Genome Differentiation in Aegilops: Evolution of the D-genome Cluster. Plant System Evol., 231: 163-190.
3. Bottalico, A. and Perrone, G. 2002. Toxigenic Fusarium Species and Mycotoxins Associated with Head Blight in Small-Grain Cereals in Europe. Eur. J. Plant. Pathol., 108: 611-624.
4. Boutigny, A. L., Ward, T. J., Van Coller, G. J., Flett, B., Lamprecht, S. C., O’Donnell, K. and Viljoen, A. 2011. Analysis of the Fusarium graminearum Species Complex from Wheat, Barley and Maize in South Africa Provides Evidence of Species-Specific Differences in Host Preference. Fungal. Genet. Biol., 48: 914-920.
5. Chandler, E. A., Duncan, R. S., Thomsett, M. A. and Nicholson, P. 2003. Development of PCR Assays to tri7 and tri13 and Characterisation of Chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol. Mol. Plant. P., 62: 355-367.
6. Chehri, Kh., Ghasempour, H. R. and Karimi, N. 2014. Molecular Phylogenetic and Pathogenetic Characterization of Fusarium Solani Species Complex (FSSC), the Cause of Dry Rot on Potato in Iran. Microb. Pathog., 65: 14-19.
7. Council for Agricultural Science and Technology (CAST). 2003. Potential Economic Costs of Mycotoxins in the United States. In: “Mycotoxins: Risks in Plant, Animal and Human Systems”. Task Force Report No. 139, Ames, IA, USA, PP. 136-142.
8. Desjardins, A. E. and Proctor, R. H. 2011. Genetic Diversity and Trichothecene Chemotypes of the Fusarium graminearum Clade Isolated from Maize in Nepal and Identification of a Putative New Lineage. Fungal. Biol., 115: 38-48.
9. Duan, C. X., Qin, Z. H., Yang, Z. H., Li, W. X., Sun, S. L., Zhu, Z. D. and Wang, X. M. 2016. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Potential Mycotoxin Production in China. Toxin., 8: 186.
10. Erdtman, G. 1960. The Acetolysis Method: A Revised Description. Svensk. Bot. Tidskr., 54: 561-564.
11. Eskola, M., Parikka, P. and Rizzo, A. 2001. Trichothecenes, Ochratoxin A and Zearalenone Contamination and Fusarium Infection in Finnish Cereal Samples in 1998. Food. Addit. Contam., 18:707–718.
12. Goswami, R. S. and Kistler, H. C. 2005. Pathogenicity and in Planta Mycotoxin Accumulation among mMembers of the Fusarium graminearum Species Complex on Wheat and Rice. Phytopathol., 95: 1397–1404.
13. Goswami, R. S. and Kistler, H. C. 2004. Heading for Disaster: Fusarium graminearum on Cereal Crops. Mol. Plant. Pathol., 5: 515-525.
14. Haratian, M., Sharifnabi, B., Alizadeh, A. and Safaie, N. 2008. PCR Analysis of the Tri13 Gene to Determine the Genetic Potential of Fusarium graminearum Isolates from Iran to Produce Nivalenol and Deoxynivalenol. Mycopathologia, 166: 109–116.
15. Inch, S. and Gilbert, J. 2003. The Incidence of Fusarium Species Recovered from Inflorescences of Wild Grasses in Southern Manitoba. Can. J. Plant. Pathol., 25: 379–383.
16. International Agency for Research on Cancer (IARC). 1993. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans. IARC, Lyon, 56.
17. Jurado, M.,Vázquez, C., Patiño, B. and González-Jaén, M. T. 2005. PCR Detection Assays for the Trichothecene-Producing Species Fusarium graminearum, Fusarium culmorum, Fusarium poae, Fusarium equiseti and Fusarium sporotrichioides. Syst. Appl. Microbiol., 28: 562–568.
18. Lenart, A. M., Klimek-Kopyra A. and Boroń, P. M. 2013. Morphological and Molecular Identification and PCR Amplification to Determine the Toxigenic Potential of Fusarium spp. Isolated from Maize Ears in Southern Poland. Phytoparasitica, 41: 241–248.
19. Lenc, L., Łukanowski, A. and Sadowski, C. 2008. The Use of PCR Amplification in Determining the Toxigenic Potential of Fusarium sambucinum and F. solani Isolated from Potato Tubers with Symptoms of Dry Rot. Phytopathol. Pol., 48: 12–23.
20. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium Laboratory Manual. Blackwell Publish Ltd., London, 388 PP.
21. Kononenko, G. P., Burkin, A. A., Gavrilova, O. P. and Gagkaeva, T. Y. 2015. Fungal Species and Multiple Mycotoxin Contamination of Cultivated Grasses and Legumes Crops. Agric. Food Sci., 24: 323–330.
22. Nash, S. M. and Snyder, W. C. 1962. Quantitative Estimations by Plat Counts of Propagules of the Bean rot Fusarium in Field Soils. Phytopathol., 73: 458-462.
23. Nicholson, P. Simpson, D. R., Weston, G., Rezanoor, H. N., Lees, A. K., Parry, D. W. and Joyce, D. 1998. Detection and Quantification of Fusarium culmorum and Fusarium graminearum in Cereals Using PCR Assays. Physiol. Mol. Plant. P., 53: 17–37.
24. O’Donnell, K., Kistler, H. C., Cigelnike, E. and Ploetz, R. C. 1998. Multiple Evolutionary Origins of the Fungus Causing Panama Disease of Banana: Concordant Evidence from Nuclear and Mitochondrial Gene Genealogies. Proceedings of the National Academy of Sciences, USA, 95: 2044-2049.
25. O’Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C. and Aoki, T. 2004. Genealogical Concordance between the Mating-Type Locus and Seven Other Nuclear Genes Supports Formal Recognition of Nine Phylogenetically Distinct Species within the Fusarium graminearum Clade. Fungal. Genet. Biol., 41: 600-623.
26. Parsa, A. 1950. Flora de Iran. Publication du Ministere del Education, Museum de Histoire Naturalle de Tehran, 5.
27. Pasquali, M., Giraud, F., Brochot, C., Cocco, E., Hoffman, L. and Bohn, T. 2010. Genetic Fusarium Chemotyping as a Useful Tool for Predicting Novalenol Contamination in Winter Wheat. Inter. J. Food. Microbiol., 137: 246–253.
28. Postic, J., Cosic, J., Vrandecic, K., Jurkovic, D., Saleh, A. A. and Leslie, J. F. 2012. Diversity of Fusarium Species Isolated from Weeds and Plant Debris in Croatia. J. Phytopathol., 160: 76–81.
29. Sanoubar, R., Bauer, A. and Seigner, L. 2015. Detection, Identification and Quantification of Fusarium graminearum and Fusarium culmorum in Wheat Kernels by PCR Techniques. J. Plant Pathol. Microb., 6: 1-8.
30. Skladanka, J., Adam, V., Dolezal, P., Nedelnik, J., Kizek, R., Linduskova, H., Mejia, J. E. and Nawrath, A. 2013. How Do Grass Species, Season and Ensiling Influence Mycotoxin Content in Forage?. Int. J. Environ. Res. Publ. Health, 10: 6084–6095
31. Stepién, L., Popiel, D., Koczyk, G. and Chełkowski, J. 2008. Wheat-Infecting Fusarium Species in Poland: Their Chemotypes and Frequencies Revealed by PCR Assay. J. Appl. Genet., 49: 433-441.
32. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol., 24: 1596-1599.
33. Tóth, B., Mesterházy, A., Nicholson, P., Téren, J. and Varga, J. 2004. Mycotoxin Production and Molecular Variability of European and American Fusarium culmorum Isolates. Eur. J. Plant. Pathol., 110: 587–599.
34. Turner, A. S., Lees, A. K., Rezanoor, H. N. and Nicholson, P. 1998. Refinement of PCR-Detection of Fusarium avenaceum and Evidence from DNO Marker Studies for Phenetic Relatedness to Fusarium tricinctum. Plant. Pathol. 47: 278–288.
35. Waalwijk, C., Kastelein, P. and Vries, I. 2003. Major Changes in Fusarium spp in Wheat in the Netherlands. Eur. J. Plant. Pathol. 109: 743–754.
36. Wolny-Koładka, K., Lenart-Boroń, A. and Boroń, P. 2015. Species Composition and Molecular Assessment of the Toxigenic Potential in the Population of Fusarium spp. Isolated from Ears of Winter Wheat in Southern Poland. J. Appl. Bot. Food Qual., 88: 139-144.
37. Yang, L., Van Der Lee, T., Yang, X. D. and Waalwijk, C. 2008. Fusarium Populations on Chinese Barley Show a Dramatic Gradient in Mycotoxin Profile. Phytopathol., 98: 719-722.
38. Yazdanseta, S., Karimzadeh, G. and Sarvestani, Z. T. 2004. Karyotypic studies in some hull-less barley (Hordeum vulgare L.) genotypes. Iranian J. Agri. Scie., 35: 827-837.
39. Yli-Mattila, T., Gavrilova, O., Hussien, T. and Gagkaeva, T. 2015. Identification of the First Fusarium Sibiricum Isolate in Iran and Fusarium langsethiae Isolate in Siberia by Morphology and Species-Specific Primers. J. Plant Pathol. 97(1): 183-187.
40. Yli-Mattila, T., Paavanen-Huhtala, S., Bulat, S. A., Alekhina, I. A. and Nirenberg, H. I. 2002. Molecular, Morphological and Phylogenetic Analysis of Fusarium avenaceum/F. arthrosporioides/F. tricinctum Species Complex: A Polyphasic Approach. Mycol. Res., 106: 655–669.
41. Yli-Mattila, T., Paavanen-Huhtala, S., Parika, P., Konstantinova, P. and Gagkaeva, T. Y. 2004. Molecular and Morphological Diversity of Fusarium Species in Finland and North-western Russia. Eur. J. Plant Pathol., 110: 573-585
42. Zhang, H,, Van der Lee, T., Waalwijk, C., Chen, W., Xu, J., Jin Xu, J. S., Zheng, Y. and Feng, J. 2012. Population Analysis of the Fusarium graminearum Species Complex from Wheat in China Show a Shift to More Aggressive Isolates. PLoS One., 7: e31722.