Response to Selection for Winter Survival and Yield in Different Populations of Synthetic Hexaploid Wheats (Triticum dicoccum/Aegilops tauschii)

Authors
1 Department of Plant Production, Technical University-Varna, Bulgaria.
2 Aksakovo Center, 9154 Aksakovo, Varna, Bulgaria.
Abstract
Pureline selection was applied in Synthetic Hexaploid Wheat populations (SHW), obtained from irradiated seeds with 150 Gy gamma rays and compared with their corresponding controls. The selection was performed in progenies of 20 initial plants from three amphiploids (8 from SHW32, 4 - SHW106 and 8 - SHW107) generating 19 M1-3 and 19 C2-5 lines. Two families did not survive winter in the first year. All selected lines expressed high germination, intermediate type of growth in winter and good seed set in the field conditions. The irradiation of seeds did not influence the germination and winter survival of the SHW plants. The response to direct selection was based on the mean performance of progenies for grain number and kernel weight per main spike and the selected elite plants in M3 and C4-5 generations. The coefficient of heritability and genetic advance for these traits were highest in SHW106, followed by SHW32. SHW107 displayed the largest morphological variability and sterility during the investigated period. All synthetics formed long, but sparse ears with seed fertility being lower than their tetraploid parents, but elite plants of SHW32 and 106 were equaled to tetraploid parent No 45432 on grain weight per major spike in 2013. Seed irradiation with 150 Gy gamma rays did not cause any effects on the two investigated traits. The selected subset of 10 lines from the three amphiploids represents a source of spike productivity for use in wheat breeding programs to enhance yield potential.

Keywords


1. Badran, A. E. and Moustafa, E. S. A. 2015. Genetic Parameters of Some Wheat (Triticum aestivum L.) Genotypes Using Factorial Mating Design. J. Agr. Sci., 7: 101-105.
2. Baenziger, P. S. and DePauw, R. M. 2009. Wheat Breeding: Procedures and Strategies. In: “Wheat Science and Trade”, (Ed.): Carver, B. F. Wiley–Blackwell, Oxford, UK.
3. Bazhenov, M. S., Divashuk, M. G., Kroupin, P. Y., Pylnev, V. V. and Karlov, G. I. 2015. The Effect of 2D(2R) Substitution on the Agronomical Traits of Winter Triticale in Early Generations of Two Connected Crosses. Cereal Res. Commun., 43 (3): 504-514.
4. Borzouei, A., Kafi, M., Khazaei, H., Naseriyan, B. and Majdabadi, A. 2010. Effects of Gamma Radiation on Germination and Physiological Aspects of Wheat (Triticum aestivum L.) Seedlings. Pak. J. Bot., 42 (4): 2281-2290.
5. Calderini, D. F. and Ortiz-Monasterio, I. 2003. Are Synthetic Hexaploids a Means of Increasing Grain Element Concentrations in Wheat? Euphytica, 134: 169-178.
6. Cheng, X., Chai, L., Chen, Z., Xu, L., Zhai, H., Zhao, A., Peng, H., Yao, Y., You, M., Sun, Q. and Ni, Z., 2015. Identification and Characterization of a High Kernel Weight Mutant Induced by Gamma Radiation in Wheat (Triticum aestivum L.). BMC Genet., 16: 127.
7. Cooper, J. K., Ibrahim, A. M. H., Rudd, J., Malla, S., Hays, D. B. and Baker, J. 2012. Increasing Hard Winter Wheat Yield Potential via Synthetic Wheat: I. Path-coefficient Analysis of Yield and Its Components. Crop Sci., 52: 2014-2022.
8. Czyczylo-Mysza, I. M., Marcinska, I., Jankowicz-Cieslak, J. and Dubert, F. 2013. The Effect of Ionizing Radiation on Vernalization, Growth and Development of Winter Wheat. Acta Biol. Cracov. Bot., 55 (1), 23-28.
9. Erkul, A., Unay, A. and Konak, C. 2010. Inheritance of Yield and Yield Components in a Bread Wheat (Triticum aestivum L.) Cross. Turk. J. Field Crop., 15 (2): 137-140.
10. Gegas, V.C., Nazari, A., Griffiths, S., Simmonds, J., Fish, L., Orford, S., Sayers, L., Doonan, J.H., Snape, J.W. 2010. A Genetic Framework for Grain Size and Shape Variation in Wheat. The Plant Cell, 22: 1046-1056.
11. Kazi, A.G., Rasheed, A., Mahmood, T. and Mujeeb-Kazi, A. 2012. Molecular and Morphological Diversity with Biotic Stress Resistance of High 1000-grain Weight Synthetic Hexaploid Wheats. Pak. J. Bot., 44: 1021-1028.
12. Kumar, A., Simons, K., Iqbal, M.J., de Jimenez, M.M., Bassi, F.M., Ghavami, F., Al-Azzam, O., Drader, T., Wang, Y., Luo, M.C., Gu, Y.Q., Denton, A., Lazo, G.R., Xu, S.S., Dvorak, J., Kianian, P.M.A. and Kianian, S.F. 2012. Physical Mapping Resources for Large Plant Genomes: Radiation Hybrids for Wheat D-genome Progenitor Aegilops tauschii. BMC Genom., 13: 597.
13. Lage, J., Skovmand, B., Pena, J. and Andersen, S. B. 2006. Grain Quality of Triticum dicoccum x Aegilops tauschii Derived Synthetic Hexaploid Wheats. Genet. Resour. Crop Evol., 53: 955-962.
14. Lai, D. E., Wang, M. and Zhang, C. Y. 2014. Quality Trait Variations in 60Co-irradiated Wheat and High-Molecular-Weight Glutenin Subunit Mutant Identification. Genet. Mol. Res., 13(4): 9024-9031.
15. Li, J., Wan, H. and Yang, W. 2014. Synthetic Hexaploid Wheat Enhances Variation and Adaptive Evolution of Bread Wheat in Breeding Processes. J. Syst. Evol., 52: 735-742.
16. Mulki, M. A., Jighly, A., Ye, G., Emebiri, L. C., Moody, D., Ansari, O. and Ogbonnaya, F. C. 2013. Association Mapping for Soilborne Pathogen Resistance in Synthetic Hexaploid Wheat. Mol. Breed., 31: 299-311.
17. Mujeeb-Kazi, A., Rosas, V. and Roldan, S. 1996. Conservation of the Genetic Variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. Non L.) in Synthetic Hexaploid Wheats (T. turgidum L.×T. tauschii, 2n= 6x= 42, AABBDD) and Its Potential Utilization for Wheat Improvement. Genet. Resour. Crop Ev., 43: 129-134.
18. Mujeeb-Kazi, A., Fuentes-Davila, G., Delgado, R., Rosas, V., Cano, S., Cortés, A., Juarez, L. and Sanchez, J. 2000. Current Status of D-Genome Based Synthetic Hexaploid Wheats and the Characterization of an Elite Subset. Ann. Wheat Newsl., 46: 76-79.
19. Mujeeb-Kazi, A., Gul, A., Farooq, M., Rizwan, S. and Ahmad, I. 2008. Rebirth of Synthetic Hexaploids with Global Implications for Wheat Improvement. Austr. J. Agr. Res., 59: 391-398.
20. Ogbonnaya, F. C., Abdalla, O., Mujeeb-Kazi, A., Kazi, A.G., Xu, S. S., Gosman, N. and Tsujimoto, H. 2013. Synthetic Hexaploids: Harnessing Species of the Primary Gene Pool for Wheat Improvement. Plant Breed. Rev., 37: 35-122.
21. Pena, R.J., Zarco-Hernandez, .J and Mujeeb-Kazi, A. 1995. Glutenin Subunit Compositions and Bread Making Quality Characteristics of Synthetic Hexaploid Wheats Derived from Triticum turgidum×Triticum tauschii (coss.) Schmal Crosses. J. Cereal Sci., 21: 15-23.
22. Petrova, T., Kostov, K., Penchev, E. 2000. Frost Resistance of T. aestivum L. Varieties from Different Geographical Origin. Bulg. J. Agric. Sci., 6: 133-138.
23. Plamenov, D. and Spetsov, P. 2011. Synthetic Hexaploid Lines are Valuable Resources for Biotic Stress Resistance in Wheat Improvement. J. Plant Pathol., 93 (2): 251-262.
24. Plamenov, D., Kiryakova, V., Petrova, T. and Spetsov, P. 2008. Characterization of Triticum turgidum ssp. dicoccon Accessions as Sources for use in Common Wheat Breeding. Plant Sci., 45: 99-106. (in Bg)
25. Plamenov, D., Belchev, I., Daskalova, N., Spetsov, P., and Moraliyski, T. 2013. Application of a Low Dose of Gamma Rays in Wheat Androgenesis. Arch. Biol. Sci., 65 (1), 291-296.
26. Prášil, I. T., Prášilová, P. and Pánková, K. 2004. Relationships among Vernalization, Shoot Apex Development and Frost Tolerance in Wheat. Annal. Bot., 94: 413-418.
27. Ram, S., Verma, A., Sharma, S. 2010. Large Variability Exits in Phytase Levels Among Indian Wheat Varieties and Synthetic Hexaploids. J. Cereal Sci., 52: 486-490.
28. Rasheed, A., Xia, X., Ogbonnaya, F., Mahmood, T., Zhang, Z., Mujeeb-Kazi, A. and He, Z. 2014. Genome-Wide Association for Grain Morphology in Synthetic Hexaploid Wheats Using Digital Imaging Analysis. BMC Plant Biol., 14: 128.
29. Simmonds, N. W. 1979. Principles of Crop Improvement. Longman Inc. Publisher, New York, USA.
30. Singh, R. K. and Chaudhary, B. D. 2004. Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi, India.
31. Sohail, Q., Inoue, T., Tanaka, H., Eltayeb, A.E., Matsuoka, Y. and Tsujimoto, H. 2011. Applicability of Aegilops tauschii Drought Tolerance Traits to Breeding of Hexaploid Wheat. Breed. Sci., 61: 347-357.
32. Spetsov, P., Plamenov, D. and Belchev, I. 2009. Breeding of Synthetic Wheats: Analysis of Amphidiploid Plants Obtained with Aegilops tauschii Coss. Field Crop. Stud., v. v-2: 207-216. (in Bg)
33. Villareal, R. L., Mujeeb-Kazi, A., Del Toro, E., Crossa, J. and Rajaram, S. 1994. Agronomic Variability in Selected Triticum turgidum×T. tauschii Synthetic Hexaploid Wheats. J. Agron. Crop Sci., 173: 307-317.