Genetic Evaluation of Sweetpotato Accessions Introduced to the Central European Area

Authors
1 Department of Crop Science, Agricultural Institute of Slovenia, Hacquetovaulica 17, SI-1000 Ljubljana, Slovenia.
2 Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
3 Biotechnical Centre Naklo, Strahinj 99, 4202 Naklo, Slovenia.
Abstract
The objectives of the study were to investigate the genetic relationships of sweetpotato [Ipomoea batatas (L.) Lam] genotypes, acquired from different origins and to evaluate the genetic relations among them,using eight SSR markers. A high level of polymorphism was found, with an average of 7.5 alleles per SSR locus. High average values of Shannon’s information index (0.864) and expected heterozygosity (0.739) revealed high level of genetic diversity of the Sweetpotato genotypes. Favorable applicability and informativity of selected set of SSR markers was confirmed by high global polymorphic information content (0.690) and low probability of genotype identity (1.4×10-8). The overall fixation index was negative (-0.562), reflecting excess of heterozygosity, due to negative assortative selection as a consequence of vegetative propagation of sweetpotato. Estimation of Rst based on AMOVA shows 23% of molecular variance; the first two coordinates of PCoA cumulatively explaining 62.33% of genetic variability. The assignment of individual genotypes into three genetic groups is highly concordant with the PCoA and Bayesian approach in Structure analysis. Our results suggest that selection and breeding can also improve genetic potential and increase genetic uniformity in sweetpotato. Evaluation of genetic background and relationships among and within genotypes provided baseline data for introduction, management, production and conservation of sweetpotato germplasm, regarding its favorable consumer acceptance in Central Europe.

Keywords


1. Baffi, E., Gracen, V. E., Blay, E. T., Ofori, K., Manu-Aduening, J. and Carey, E. E. 2015. Evaluation of Sweetpotato Accessions for End-User Preferred Traits Improvement. Afr. J. Agric. Res., 10(50): 4632-4645.
2. Beigi, S., Zamanizadeh, H., Razavi, M. and Zare, R. 2013. Genetic Diversity of Iranian Isolates of Barley Scald Pathogen (Rhynchosporiumsecalis) Making Use of Molecular Markers. J. Agr. Sci. Tech., 15: 843-854.
3. Buteler, M. I., Jarret, R. L. and LaBonte, D. R. 1999. Sequence Characterization of Microsatellites in Diploid and Polyploid Ipomoea. Theor. Appl. Genet., 99: 123–132.
4. Eivazi, A.R., Naghavi, M.R., Hajheidari, M., Pirseyedi, S.M., Ghaffari, M.R., Mohammadi, S. A., Majidi, I., Salekdeh, G. H. and Mardi, M. 2008. Assessing Wheat (Triticumaestivum L.) Genetic Diversity Using Quality Traits, Amplified Fragment Length Polymorphisms, Simple Sequence Repeats and Proteome Analysis. Ann. Appl. Biol., 152: 81–91.
5. Erayman, M., İlhan, E., Güzel, Y. and Eren, A. H. 2014. Transferability of SSR Markers from Distantly Related Legumes to Glycyrrhiza Species. Turk. J. Agric. For., 38: 32–38.
6. Escalante-Sánchez, E., Rosas-Ramírez, D., Linares, E., Bye, R. and Pereda-Miranda, R. 2008. Batatinosides II–VI, Aacylated Lipooligosaccharides from the Resin Glycosides of Sweetpotato. J. Agric. Food Chem., 56: 9423–9428.
7. Evanno, G., Regnaut, S. and Goudet, J. 2005. Detecting the Number of Clusters of Individuals Using the Software STRUCTURE: a Simulation Study. Mol. Ecol., 14: 2611–2620.
8. Hernandez, T. P., Hernandez, T. and Miller, J. C. 1964. Frequency of Somatic Mutations in Several Sweetpotato Varieties. P. Am. Soc. Hortic. Sci., 85: 430–434.
9. Hu, J, Nakatani, M. and Mizuno, K. and Fujimura, T. 2004. Development and Characterization of Microsatellite Markers in Sweetpotato. Breed. Sci., 54:177–188.
10. Hu, J., Nakatani, M., Lalusin, A. G., Kuranouchi, T. and Fujimura, T. 2003. Genetic Analysis of Sweetpotato and Wild Relatives Using Inter-Simple Sequence Repeats (ISSRs). Breed. Sci., 53: 297–304.
11. Huang, Y., Chang, Y. and Shao, Y. 2006. Effects of Genotype and Treatment on the Antioxidant Activity of Sweetpotato in Taiwan. Food Chem., 98: 529–538.
12. Hwang, S. Y., Tseng, Y. T. and Lo, H. F. 2002. Application of Simple Sequence Repeats in Determining the Genetics Relationships of Cultivars Used in Sweetpotato Polycross Breeding in Taiwan. Sci. Hort., 93: 215–224.
13. Jarret, R. L. and Bowen, N. 1994. Simple Sequence Repeats (SSRs) for Sweetpotato Germplasm Characterization. Plant. Genet. Resour. Newsl., 100: 9–11.
14. Koussao, S., Gracen, V., Asante, I., Danquah, E. Y., Ouedraogo, J. T., Baptiste, T. J., Jerome, B. and Vianney, T. M. 2014. Diversity Analysis of Sweetpotato (Ipomoea batatas [L.] Lam) Germplasm from Burkina Faso Using Morphological and Simple Sequence Repeats Markers. Afr. J. Biotechnol., 13(6): 729-742
15. Kunstelj, N., Žnidarčič, D. and Šter, B. 2013. Employing Artificial Neural Networks and Regression in Analysis on Knowledge about Sweetpotato (Ipomoea batatas L.) in Slovenia. Ital. J. Food Sci., 25: 263–274.
16. Kunstelj, N., Žnidarčič, D. and Šter, B. 2013. Using Association Rules Mining for Sweetpotato (Ipomoea batatas L.) in Slovenia: a Case Study. Int. J. Food, Agric. and Environ.,11: 253–258.
17. Manifesto, M. M., Costa Tártara, S. M., Arizio, C. M., Alvarez, M. A. and Hompanera, N. R. 2010. Analysis of the Morphological Attributes of a Sweetpotato Collection. Ann. Appl. Biol., 157: 273–281.
18. Mansour, E., Ben Khaled, A., Triki, T., Abid, M., Bachar, K. and Ferchichi, A. 2015. Evaluation of Genetic Diversity among South Tunisian Pomegranate (Punicagranatum L.) Accessions Using Fruit Traits and RAPD Markers. J. Agr. Sci. Tech., 17: 109-119.
19. Maras, M., Pipan, B., Šuštar-Vozlič, J., Todorović, V., Đurić, G., Vasić, M., Kratovalieva, S., Ibusoska, A., Agić, R., Matotan, Z., Čupić, T. and Meglič V. 2015. Examination of Genetic Diversity of Common Bean from the Western Balkans. J. Amer. Soc. Hort. Sci., 140(4): 208-316.
20. Matos, E. L. S., Oliveira, E. J., Jesus, O. N. and Dantas, J. L. L. 2013. Microsatellite Markers of Genetic Diversity and Population Structure of Carica papaya. Ann. Appl. Biol., 163: 298–310.
21. Moulin, M. M., Rodrigues, R., Gonçalves, L. S. A., Sudré, C. P., dos Santos, M. H. and da Silva, H. R. 2012. Collection and Morphological Characterization of Sweetpotato Landraces in North of Rio de Janeiro State. Hortic. Bras., 30: 286–292.
22. Naghavi, M. R., Malaki, M., Alizadeh, H., Pirseiedi, M. and Mardi, M. 2009. An Assessment of Genetic Diversity in Wild Diploid Wheat (Triticum boeoticum) from West of Iran Using RAPD, AFLP and SSR Markers. J. Agr. Sci. Tech., 11: 585-598
23. Nei, M. 1972. Genetic Distance between Populations. Amer. Nat., 106: 283–392.
24. Nováková, A., Šimáčková, K., Bárta, J. and Čurn, V. 2009. Potato Variety Identification by Molecular Markers Based on Retrotransposon Analyses. Czech J. Genet. Plant Breed., 45: 1–10.
25. Park, S. 2001. Microsatellite Toolkit. Department of Genetics, Trinity College, Dublin, Ireland.
26. Pascher, K., Macalka, S., Rau, D., Gollman, G., Reiner, H., Glössl, J. and Grabherr, G. 2010. Molecular Differentiation of Commercial Varieties and Feral Populations of Oilseed Rape (Brassica napus L.). BMC Evol. Biol., 10: 63. doi: 10.1186/1471-2148-10-63.
27. Peakall, R. and Smouse, P. E. 2006.GenAlEx 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Mol. Ecol. Note., 6: 288–295.
28. Pipan, B., Šuštar-Vozlič, J. and Meglič, V. 2013. Genetic Differentiation among Sexually Compatible Relatives of Brassica napus L. Genetika, 45(2): 309–327.
29. Pritchard, J. K., Wen, X. and Falush, D. 2009. Documentation for STRUCTURE Software: Version 2.3. Department of Human Genetics, University of Chicago and Department of Statistics, University of Oxford, USA.
30. Roullier, C., Kambouo, R., Paofa, J., McKey, D. and Lebot, V. 2013. On the Origin of Sweetpotato [Ipomoea batatas (L.) Lam.] Genetic Diversity in New Guinea, a Secondary Centre of Diversity. Heredity (Edinb.), 110(6): 594–604.
31. Rusjan, D., Pipan, B., Pelengić, R. and Meglič, V. 2012 Genotypic and Phenotypic Discrimination of Grapevine (Vitis vinifera L.) Varieties of the 'Vitovska' and 'Garganja' Denominations. Eur. J. Hortic. Sci., 77(2): 84–94.
32. Rusjan, D., Pelengić, R., Pipan, B., Or, E., Javornik, B. and Štajner N. 2015. Israeli germplasm: phenotyping and genotyping of native grapevines (Vitisvinifera L.). Vitis, 54: 87-89.
33. Salahlou, R., Safaie, N. and Schams-Bakhsh, M. 2016. Genetic Diversity of Macrophomina phaseolina Populations, the Causal Agent of Sesame Charcoal Rot Using Inter-Simple Sequence Repeat Markers. J. Agr. Sci. Tech., 18: 277-287.
34. Schuelke, M. 2000. An Economic Method for the Fluorescent Labelling of PCR Fragments. Nature Biotechnol., 18: 233–234.
35. Shanjani, P. S., Jafari, A. A. and Kohi, L. 2012. Genetic Variation and Relationships between Local and Exotic Germplasm of Dactylis glomerata, Based on Morphological and Total Protein Markers. Rom. Agric. Res., 29: 103–113.
36. Silva, G. O., Ponijaleki, R. and Suinaga, F. A. 2012. Genetic Divergence among Sweetpotato Accessions Based on Root Traits. Hortic. Bras., 30: 595–599.
37. Takahata, Y., Kai, Y., Tanaka, M., Nakayama, H. and Yoshinaga, M. 2011. Enlargement of the Variances in Amount and Composition of Anthocyanin Pigments in Sweetpotato Storage Roots and their Effect on the Differences in DPPH Radical-Scavenging Activity. Sci. Hortic., 127: 469–474.
38. Veasey, E. A., Borges, A., Silva Rosa, M., Queiroz-Sila, J. R., de Andrade Bressan, E. and Peroni, N. 2008. Genetic Diversity in Brazilian Sweetpotato [Ipomoea batats (L.) Lam., Solanaes, Convolvulaceae] Landraces Assessed with Microsatellite Markers. Genet. Mol. Biol., 31(3): 725–733.
39. Wagner, H. W. and Sefc, K. M. 1999. Identity 1.0. Centre for Applied Genetics, University of Agricultural Sciences, Vienna, Austria.
40. Yang, X. S., Su, W. J., Wang, L. J., Lei, J., Chai, S. S. and Liu, Q. C. 2015. Molecular Diversity and Genetic Structure of 380 Sweetpotato Accessions as Revealed by SSR Markers. J. Integr. Agric., 14(4): 633-641.
41. Zhang, D., Cervantes, J., Huamán, Z., Carey, E. and Ghislain, M. 2000. Assessing Genetic Diversity of Sweetpotato [Ipomoea batatas (L.) Lam.] Cultivars from Tropical America Using AFLP. Genet. Resour. Crop. Ev., 47: 659–665.
42. Zhang, D. P., Rossel, G., Kriegner, A. and Hijmans, R. 2004. AFLP Assessment of Diversity in Sweetpotato from Latin America and the Pacific Region: Its Implications on the Dispersal of the Crop. Genet. Resour. Crop. Ev., 51: 115–120.
43. Zhang, C. B., Peng, B., Zhang, W. L., Wang, S. M., Sun, H., Dong, Y. S. and Zhao, L. M. 2014. Application of SSR Markers for Purity Testing of Commercial Hybrid Soybean (Glycine max L.). J. Agr. Sci. Tech., 16: 1389-1396.