Effect of Methyl Jasmonate on Carbohydrate Composition, α-Amylase Activity and Growth of Triticale (Triticosecale Witmmack) Seedlings

Authors
1 Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
2 Department of Biochemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
3 Department of Biochemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
4 Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences in Olsztyn, Poland.
Abstract
The effect of Methyl Jasmonate (MJ, jasmonic acid methyl ether) at 10-6-10-3M concentrations on triticale kernels germination, seedling growth, changes in soluble carbohydrates content and composition, and activity of α-amylase was studied. MJ inhibited the germination of triticale kernels, possibly due to decreasing activity of α-amylase, leading to the depletion of soluble carbohydrates in both embryonic and endosperm tissues. In this way, MJ reduced starch degradation. A lower amount of soluble carbohydrates in germinating seeds decreased water uptake (between 24 and 72 hours of germination) and delayed seedling development. The above effect can be attributed to high concentrations of MJ in the incubation mixture (10-3M, 10-4M). MJ reduced the number of embryonic roots in 5-days-old seedlings in all examined concentration ranges.

Keywords


1. Appleford, N. E. J. and Lenton, J. R. 1997. Hormonal Regulation of α-Amylase Gene Expression in Germinating Wheat (Triticum aestivum) Grains. Physiol. Plant., 100: 534-542.
2. Aoki, N., Scofield, G. N., Wang, X. -D., Offler, C. E., Patrick J. W. and Furbank R. T. 2006. Pathway of Sugar Transport in Germinating Wheat Seeds. Plant Physiol., 14: 1255-1263.
3. Barnes, P. J. 1982. Composition of Cereal Germ Preparations. Z. Lebensm. Unters. Forsch., 174: 467-471.
4. Barrero, J. M., Talbot, M. J., White, R. G., Jacobsen, J. V. and Gubler, F. 2009. Anatomical and Transcriptomic Studies of the Coleorhiza Reveal the Importance of This Tissue in Regulating Dormancy in Barley. Plant Physiol., 150: 1006-1021.
5. Białecka, B. and Kępczyński, J. 2003. Jasmonides in Breaking Dormancy and Germination of Seeds. Post. Biol. Kom., 30(3): 447-459.
6. Białecka, B. and Kępczyński, J. 2003a. Regulation of α-Amylase Activity in Amaranthus caudatus Seeds by Methyl Jasmonate, Gibberellin A3, Benzyladenine and Ethylene. Plant Growth Regul., 39: 51-56.
7. Białecka, B. and Kępczyński, J. 2003b. Endogenous Ethylene and Reversing Methyl Jasmonate Inhibition of Amaranthus caudatus Seed Germination by Benzyladenine or Gibberellin. Plant Growth Regul., 41(1): 7-12.
8. Białecka, B. and Kępczyński, J. 2007. Changes in Concentrations of Soluble Carbohydrates during Germination of Amaranthus caudatus L. Seeds in Relation to Ethylene, Gibberellin A3 and Methyl Jasmonate. Plant Growth Regul., 51: 21-31.
9. Blöchl, A., Peterbauer, T. and Richter, A. 2007. Inhibition of Raffinose Oligosaccharide Breakdown Delays Germination of Pea Seeds. J. Plant Physiol., 164: 1093-1096.
10. Cercós, M., Gómez-Cadenas, A. and Ho, T.-H. D. 1999. Hormonal Regulation of a Cysteine Proteinase Gene, EPR-1, in Barley Aleurone Layers: Cis- and Trans-Acting Elements Involved in the Co-ordinated Gene Expression Regulated by Gibberellins and Abscisic Acid. Plant J., 19: 107-118.
11. Dèlano-Frier, J. P., Martínez-Gallardo, N. A., Martínez-De La Vega, O., Salas-Araiza, M. D., Barbosa-Jaramillo, E. R., Torres, A., Vargas, P. and Borodanenko, A. 2004. The Effect of Exogenous Jasmonic Acid on Induced Resistance and Productivity in Amaranth (Amaranthus hypochondriacus) Is Influenced by Environmental Conditions. J. Chem. Ecol., 30: 1001-1034.
12. Frank, T., Scholz, B., Peter, S. and Engel, K.-H. 2011. Metabolite Profiling of Barley: Influence of the Malting Process. Food Chem., 124: 948-957.
13. Górecki, R. J., Fordoński, G., Halmajan, H., Horbowicz, M., Jones, R. and Lahuta, L.B. 2001. Seed Physiology and Biochemistry. In: “Carbohydrates in Legume Seeds”, (Ed.): Hedley, C. L. CAB International, Wallingford, UK, PP. 117-143.
14. Heinrich, M., Hettenhausen, C., Lange, T., Wünsche, H., Fang, J., Balwin, I. T. and Wu, J. 2013. High Levels of Jasmonic Acid Antagonize the Biosynthesis of Gibberellins and Inhibit the Growth of Nicotiana attenuata Stems. Plant J., 73: 591-606.
15. Lahuta, L.B. 2006. Biosynthesis of Raffinose Family Oligosaccharides and Galactosyl Pinitols in Developing and Maturing Seeds of Winter Vetch (Vicia villosa Roth.). Acta Soc. Bot. Pol., 75: 219-227.
16. Lahuta, L.B. and Goszczyńska, J. 2010. Inhibition of Raffinose Family Oligosaccharides and Galactosyl Pinitols Breakdown Delays Germination of Winter Vetch (Vicia villosa Roth.) Seeds. Acta Soc. Bot. Pol., 78: 203-208.
17. Linkies, A. and Leubner-Metzger, G. 2012. Beyond Gibberellins and Abscisic Acid: How Ethylene and Jasmonates Control Seed Germination. Plant Cell Report., 31: 253-270.
18. Memelink, J. 2009. Regulation of Gene Expression by Jasmonate Hormones. Phytochem., 70: 1560-1570.
19. Norastehnia, A., Sajedi, R. H. and Nojavan-Asghari, M. 2007. Inhibitory Effects of Methyl Jasmonate on Seed Germination in Maize (Zea mays): Effect on α-Amylase Activity and Ethylene Production. Gen. Appl. Plant. Physiol., 33: 13-23.
20. Sánchez-Romera, B., Ruiz-Lozano, J. M., Li, G., Luu, D. -T., Martínez-Ballesta, M. C., Carvajal, M., Zamarreño, A. M., García-Mina, J. M., Maurel, C. and. Aroca, R. 2014. Enhancement of Root Hydraulic Conductivity by Methyl Jasmonate and the Role of Calcium and Abscisic Acid in the Process. Plant Cell Environ., 37: 995-1008.
21. Saniewski, M. and Czapski, J. 1999. Jasmonates and Their Allelopathic Function. Post. Nauk Roln., 46: 3-18.
22. Schmalz, E. A., Alborn, H. T., Banchio, E. and Tumlinson, J. H. 2003. Quantitative Relationships between Induced Jasmonie Acid Levels and Volatile Emission in Zea mays during Spodoptera exigua Herbivory. Planta 216: 665-673.
23. Scofield, G. N., Aoki, N., Hirose, T., Takano, M., Jenkins, C. L. D. and Furbank, R. T. 2007. The Role of the Sucrose Transporter, OsSUT1, in Germination and Early Seedling Growth and Development of Rice Plants. J. Exp. Bot., 58: 483-495.
24. Sitarski, J., Andrzejczuk-Hybel, J. and Kączkowski, J. 1992. Alpha-Amylase and β-Amylase Activity in Triticale Grains. Acta Physiol. Plant., 14: 177-183.
25. Sreenivasulu, N., Usadel, B., Winter, A., Radchuk, V., Scholz, U., Stein, N., Weschke, W., Strickert, M., Close, T. J., Stitt, M., Graner, A. and Wobus, U. 2008. Barley Grain Maturation and Germination: Metabolic Pathway and Regulatory Network Commonalities and Differences Highlighted by New MapMan/PageMan Profiling Tools. Plant Physiol., 146: 1738-1758.
26. Sugimoto, N., Takeda, G., Nagato, Y. and Yamaguchi, J. 1998. Temporal and Spatial Expression of the α-Amylase Gene during Seed Germination in Rice and Barley. Plant Cell Physiol., 39: 323-333.
27. Yang, D. -L., Yao, J., Mai, C.-S., Tong, X. -H., Zeng, L. -J., Li, Q., Xiao, L. -T., Sun, T., Li, J., Deng, X. -W., Lee, C. M., Thomashow, M. F., Yang, Y., He, Z. and He, S. Y. 2012. Plant Hormone Jasmonate Prioritizes Defense over Growth by Interfering with Gibberellin Signaling Cascade. PNAS, E1192-E1200.
28. Zalewski, K., Nitkiewicz, B., Lahuta, L. B., Głowacka, K., Socha, A. and Amarowicz, R. 2010. Effect of Jasmonic Acid-Methyl Ester on the Composition of Carbohydrates and Germination of Yellow Lupine (Lupinus luteus L.) Seeds. J. Plant Physiol., 167: 967-973.
29. Zhang, Y. and Turner, J. G. 2008. Wound-Induced Endogenous Jasmonates Stunt Plant Growth by Inhibiting Mitosis. PLoS ONE, 3(11): e3699. doi:10.1371/journal.pone.0003699