1. Acevedo, M. A., Corrada-Bravo, C. J., Corrada-Bravo, H., Villanueva-Rivera, L. J. and Aide, T. M. 2009. Automated Classification of Bird and Amphibian Calls Using Machine Learning: A Comparison of Methods. Ecol. Inform., 4(4): 206-214.
2. Akin, M. 2002. Comparison of Wavelet Transform and FFT Methods in the Analysis of EEG Signals. J. Med. Syst., 26(3): 241-247.
3. Bagheri, B., Ahmadi, H. and Labbafi, R. 2010. Application of Data Mining and Feature Extraction on Intelligent Fault Diagnosis by Artificial Neural Network and K-Nearest Neighbor. XIX International Conference on Electrical Machines, ICEM 2010.
4. Banakar, A. and Azeem, M. F. 2008. Artificial Wavelet Neuro-Fuzzy Model Based on Parallel Wavelet Network and Neural Network. Soft. Comput., 12(8): 789-808.
5. Banakar, A., Sadeghi, M. and Shoushtari, A. 2016. An intelligence Device for Diagnosing Avian Disease: Newcastle, Bronchitis and avian Influenza. Comput. Electron. Agr., 127: 744 – 753.
6. Bazzano, G., Leche, A., Martella, M. B. and Navarro, J. L. 2012. Efficiency of the Cloacal Sexing Thechnique in Greater Rhea Chicks (Rhea americana). Birt. Poult. Sci., 53(3): 394-6.
7. Burges, C. J. 1998. A Tutorial on Support Vector Machines for Pattern Recognition. Data. Min. Knowl. Discov., 2(2): 121-167.
8. Cerit, H. and Avanus, K. 2007. Sex Identification in Avian Species Using DNA Typing Methods. Worlds. Poult. Sci. J., 63(01): 91-100.
9. Cortes, C. and Vapnik, V. 1995. Support-Vector Networks. Mach. Learn., 20(3): 273-297.
10. Dubiec, A. and Zagalska-Neubauer, M. 2006. Molecular Techniques for Sex Identification in Birds. Biol. Lett., 43(1): 3-12.
11. Duhamel, P. and Vetterli, M. 1990. Fast Fourier Transforms: A Tutorial Review and a State of the Art. Signal. Process., 19(4): 259-299.
12. Gong, W., Obikawa, T. and Shirakashi, T. 1997. Monitoring of Tool Wear States in Turning Based on Wavelet Analysis. JSME Int. J. Serie. C., 40(3): 447-453.
13. Griffiths, R. 2000. Sex Identification in Birds. Seminars in Avian and Exotic Pet Medicine, Elsevier.
14. Harz, M., Krause, M., Bartels, T., Cramer, K., Rösch, P. and Popp, J. 2008. Minimal Invasive Gender Determination of Birds by Means of UV-Resonance Raman Spectroscopy. Anal. Chem., 80(4): 1080-1086.
15. Huang, C. -J., Yang, Y. -J., Yang, D. -X. and Chen, Y. -J. 2009. Frog Classification Using Machine lLearning Techniques. Expert. Syst. Appl., 36(2): 3737-3743.
16. Iyer, S., Sinha, S. K., Tittmann, B. R. and Pedrick, M. K. 2012. Ultrasonic Signal Processing Methods for Detection of Defects in Concrete Pipes. Automat. Constr., 22: 135-148.
17. Joachims, T. 1998. Text Categorization with Support Vector Machines: Learning with Many Relevant Features. Mach. Learn.: ECML, 98: 137–142.
18. Khazaee, M., Ahmadi, H., Omid, M., Banakar, A. and Moosavian, A. 2013. Feature-Level Fusion Based on Wavelet Transform and Artificial Neural Network for Fault Diagnosis of Planetary Gearbox Using Acoustic and Vibration Signals. INSIGHT, 55(6): 323-330.
19. Lee, J., Jin, L., Park, D., Chung, Y. and Chang, H. 2015. Acoustic Features for Pig Wasting Disease Detection. Inf. Process. Manage., 6(1): 37-46.
20. Lei, Y., He, Z. and Zi, Y. 2008. A New Approach to Intelligent Fault Diagnosis of Rotating Machinery. Expert. Syst. Appl., 35(4): 1593-1600.
21. Manimala, K., Selvi, K. and Ahila, R. 2011. Hybrid Soft Computing Techniques for Feature Selection and Parameter Optimization in Power Quality Data Mining. Appl. Soft. Comput., 11(8): 5485-5497.
22. Malago, W., Medaglia, A., Matheucci, E. and Henrique Silva, F. 2005. New PCR Multiplexes for Sex Typing of Ostriches. Braz. J. Biol., 65: 743-745.
23. Misiti, M., Misiti, Y., Oppenheim, G. and Poggi, J. -M. 1996. Wavelet Toolbox. MathWorks Inc., Natick, MA.
24. McEnnis, D., Mckay, C., Fujinaga, I., Depalle, P. 2005. jAudio: A Feature Extraction Library. Proceedings of the International Conference on Music Information Retrieval, PP. 600-603.
25. Morinha, F., Cabral, J. A. and Bastos, E. 2012. Molecular Sexing of Birds: a Comparative Review of Polymerase Chain Reaction (PCR)-Based Methods. Theriogenol., 78: 703-714.
26. Peng, Z., Tse, P. W. and Chu, F. 2005. A Comparison Study of Improved Hilbert–Huang Transform and Wavelet Transform: Application to Fault Diagnosis for Rolling Bearing. Mech. Syst. Signal. Pr., 19(5): 974-988.
27. Richner, H. 1989. Avian Laparoscopy as Field Technique for Sexing Birds and an AAssessment of Its Effects on Wild Birds. J. Field. Ornithol., 60: 137-142.
28. Sadeghi, M., Banakar, A., Khazaee, M. and Soleimani, M. R. 2015. An Intelligent Procedure for the Detection and Classification of Chickens Infected by Clostridium perfringens Based on Their Vocalization. Braz. J. Poult. Sci., 17: 537-544.
29. Saravanan, N. and Ramachandran, K. 2010. Incipient Gear Box Fault Diagnosis Using Discrete Wavelet Transform (DWT) for Feature Extraction and Classification Using Artificial Neural Network (ANN). Expert. Syst. Appl. 37(6): 4168-4181.
30. Scholkopf, B., Sung, K.-K., Burges, C. J., Girosi, F., Niyogi, P., Poggio, T. and Vapnik, V. 1997. Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers. IEEE T. Signal. Proces., 45(11): 2758-2765.
31. Singla, A., Patra, S. and Bruzzone, L. 2014. A Novel Classification Technique Based on Progressive Transductive SVM Learning. Pattern. Recogn. Lett., 42: 101-106.
32. Turkoglu, I., Arslan, A. and Ilkay, E. 2003. An Intelligent System for Diagnosis of the Heart Valve Diseases with Wavelet Packet Neural Networks. Comput. Biol. Med., 33(4): 319-331.
33. Tikhonov, A. V. 1986. Acoustic Signalization and Ecology of Birds. Moscow University Press, Moscow, 236 PP.
34. Volodin, I., Kaiser, M., Matrosova, V., Volodina, E., Klenova, A., Filatova, O. and Kholodova, M. 2009. The Technique of Noninvasive Distance Sexing for Four Monomorphic Dendrocygna Whistling Duck Species by Their Loud Whistles. Bioacoust., 18: 277-90.
35. Volodin, I., Volodina, E., Klenova, A. and Matrosova, V. 2015. Gender Identification Using Acoustic Analysis in Birds without External Sexual Dimorphism. Avian. Res., 6: 6-20.
36. Wang, X., Makis, V. and Yang, M. 2010. A Wavelet Approach to Fault Diagnosis of a Gearbox under Varying Load Conditions. J. Sound. Vib., 329(9): 1570-1585.
37. Wu, J. -D. and Liu, C. -H. 2009. An Expert System for Fault Diagnosis in Internal Combustion Engines Using Wavelet Packet Transform and Neural Network. Expert. Syst. Appl., 36(3): 4278-4286.
38. Yang, J., Yang, J. Y., Zhang, D. and Lu, J. F. 2003. Feature Fusion: Parallel Strategy vs. Serial Strategy. Pattern. Recogn., 36: 1369-1381.
39. Zhan, Y. and Makis, V. 2006. A Robust Diagnostic Model for Gearboxes Subject to Vibration Monitoring. J. Sound. Vib., 290(3): 928-955.
40. Zhu, K., Wong, Y. S. and Hong, G. S. 2009. Wavelet Analysis of Sensor Signals for Tool Condition Monitoring: A Review and Some New Results. Int. J. Mach. Tool. Manu., 49(7): 537-553.