Nutritional Characterization, Bioactive Compounds and Antioxidant Activity of Brazilian Roses (Rosa spp)

Authors
1 Department of Technology and Food Chemistry, Federal University of Paraíba, Paraíba, Brazil.
2 Department of Biochemistry, Federal University of Ceará, Fortaleza, Brazil.
3 Department of Fitotecny, Federal University of Ceará, Fortaleza, Brazil.
4 Tropical Agroindustry Embrapa, Sara Mesquita, Fortaleza, Brazil.
Abstract
The aim of this study was to evaluate thirteen cultivars of roses for nutritional composition, bioactive compounds and total antioxidant activity. Attaché cultivar had the highest amounts of proteins and total fiber. Regarding color,Avalanchepresented values for internal cromacity around 7 fold higher than Attaché cultivar. The results showed that the evaluated roses presented means of bioactive compounds as ascorbic acid (70.47 mg 100 g-1), yellow flavonoids (35.25 mg 100 g-1) and total anthocyanins (150.40 mg 100 g-1). The evaluated roses presented relatively low content of total carotenoids (1.25 mg 100 g-1), and high content of total polyphenols (1565 mg 100 g-1) and antioxidant capacity (260 µM trolox g-1). Avalanche, Prima Donna, Dolce Vita, Salmone, and Elisa cultivar presented the minor Euclidean distance. The petals of the evaluated roses are excellent sources of nutritional compounds and antioxidants.

Keywords


1. Almeida, M. M. B., Sousa, P. H. M., Fonseca, M. L., Magalhães, C. E. C., Lopes, M. F. G. and Lemos, T. L. G. 2009. Avaliação de Macro e Microminerais em Frutas Tropicais Cultivadas no Nordeste Brasileiro. Ciênc. Tecnol. Aliment., 29: 581-586.
2. AOAC. 2005. Official Methods of Analysis of the Association of Official Analytical Chemistry. 11Edition, AOAC, Washington, 1115 PP.
3. Bintory, M. A., Seetharamu, G. K, Munikrishnappa, P. M, Ramegowda, G. K. and Basavaraj, G. 2015. Evaluation of the Color of Dried Dutch Rose Flowers Using a Colorimeter. J Hortic., 2: 1-4.
4. Bruinsma, J. 1963. The Quantitative Analysis of Chlorophylls A and B in Plant Extracts. J. Photochem. Photobiol. B., 2: 241-249.
5. Burfield, T. 2005. Edible Flowers Start to Outgrow Role as Garnish. The Packer, 6 PP.
6. Clifford, M. N. 2000. Anthocyanins Nature, Occurrence and Dietary Burden. J. Sci. Food Agric., 80: 1063-1072.
7. Cutler, R. R. 2003. Culinary and Medicinal Uses and Nutritional Value. In: “Encyclopedia of Rose Science”, (Eds.): Roberts, A. V., Debener, T. and Gudin, S. Elsevier, Academic Press, San Diego, CA, PP. 707-726.
8. Eengel, V. L. and Poggini, F. 1991. Estudo da Concentração de Clorofila nas Folhas e Seu Espectro de Absorção de Luz em Função do Sombreamento em Mudas de Quatro Espécies Florestais Nativas. Rev. Bras. Fisiol. Veg., 3: 39-45.
9. Francis, F. J. 1982. Analysis of Anthocyanins. In: “Anthocyanins as Food Color”, (Ed.): Markakis, P. Academic Press, New York, PP. 181-207.
10. Garz’on, G. A., Riedi, K. M. and Schwartz, S. J. 2009. Determination of Anthocyanins, Total Phenolic Content, and Antioxidant Activity in Andes Berry (Rubus glaucus Benth). J. Food Sci., 74: 227-232.
11. George, D. S., Z. Razali, Z. and C. Somasundram. 2016. Physiochemical Changes during Growth and Development of Pineapple (Ananas comosus L. Merr. cv. Sarawak). J. Agr. Sci. Tech., 18: 491-503.
12. Gouado I., Schweigert F. J., Ejoh R. A., Tchouanguep M. F. and Camp J. V.2007. Systemic Levels of Carotenoids from Mangoes and Papaya Consumed in Three Forms (Juice, Fresh and Dry Slice). Eur. J. Clin. Nutrition., 61: 1180-1188.
13. Higby, W. K. 1962. A Simplified Method for Determination of Some the Carotenoid Distribution in Natural and Carotene-Fortified Orange Juice. J. Food Sci., 27: 42-49.
14. IAL. 2005. Physicochemical Methods for Food Analyses. 4 Edition, Adolfo Lutz Institut, São Paulo, 1032 PP.
15. Kaisoon, O., Konczak, I. and Siriamornpun, S. 2012. Potential Health Enhancing Properties of Edible Flowers from Thailand. Food Res. Int., 46: 563-571.
16. Kelley, K. M., Behe, B. K., Biernbaum, J. A. and Poff, K. L. 2002. Combinations of Colors and Species of Containerized Edible Flowers: Effect on Consumer Preferences. Hortsci., 37: 218-221.
17. Kruger, M., Sayed, N., Langenhoven, M. and Holing, F. 1998. Composition of South African Foods: Vegetables and Fruit. Medical Research Council, Cape Town, South Africa.
18. Kucekova, Z., Mlcek, J., Humpolicek, P., Rop, O. 2013. Edible Flowers - antioxidant Activity and Impact on Cell Viability. Cent. Eur. J. Biol., 8(10): 1023-1031.
19. Lara-Cortés, E., Osorio-Díaz, P., Jiménez-Aparicio, A. and Bautista-Baños, S. 2013. Contenido Nutricional, Propiedades Funcionales y Conservación de Flores Comestibles. Arch. Latinoam. Nutr., 63: 197-208.
20. Larrauri, J. A., Rupérez, P. and Saura-Calixto, F. 1997. Effect of Drying Temperature on the Stability of Polyphenols and Antioxidant Activity of Red Grape Pomace Peels. J. Agric. Food Chem., 45: 1390-1393.
21. Loizzo, M. R., Pugliese, A., Bonesi, M., Tenuta, M. C., Menichini, F., Xiao, J. and Tundis, R. 2015. Edible Flowers: A Rich Source of Phytochemicals with Antioxidant and Hypoglycemic Properties. J. Agric. Food Chem., 19. DOI: 10.1021/acs.jafc.5b03092
22. Lopes, M. M. A., Miranda, M. R. A., Moura, C. F. H. and Enéas-Filho, J. 2012. Bioactive Compounds and Total Antioxidant Capacity of Cashew Apples (Anacardium occidentale L.) during the Ripening of Early Dwarf Cashew Clones. Ciênc. Agrotec., 36: 325-332.
23. López-García, J., Kuceková, Z, Humpolíček, P, Mlček J., and Sáha P. 2013. Polyphenolic Extracts of Edible Flowers Incorporated onto Atelocollagen Matrices and Their Effect on Cell Viability. Molecules, 18(11): 13435-13445.
24. Martins, D., Barros, L., Carvalho, A. M., and Ferreira, C. F. R. 2011. Nutritional and In Vitro Antioxidant Properties of Edible Wild Greens in Iberian Peninsula Traditional Diet. Food Chem., 125: 488-494.
25. McCready, R. M. and McComb, E. A. 1952. Extraction and Determination of Total Pectic Materials in Fruit. Anal. Chem., 24(12):1986-1988.
26. Miller, G. L. 1959. Use of dinitrosalicylic Acid Reagent for Determination of Reducing Sugars. Anal. Chem., 31: 426-428.
27. Mlcek, J. and Rop, O. 2011. Fresh Edible Flowers of Ornamental Plants: A New Source of Nutraceutical Foods. Trend. Food Sci. Tech., 22: 561-569.
28. Navarro-González, I., González-Barrio, R., García-Valverde, V., Bautista-Ortín, A. B. and Periago, M. J. 2015. Nutritional Composition and Antioxidant Capacity in Edible Flowers: Characterisation of Phenolic Compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci, 16: 805-822. Doi: 10.3390/ijms16010805.
29. Neves, L. C., Silva, V. X., Pontis, J. A., Flach, A. and Roberto, S. R. 2015. Bioactive Compounds and Antioxidant Activity in Pre-Harvest Camu-Camu [Myrciaria dubia (HBK) Mc Vaugh] Fruits. Scientia Hort., 186: 223-229.
30. Newell A., Yousef G., Lila M. A., Ramírez-Mares M. V. and Gonzalez de Mejia, E. 2010. Comparative In Vitro Bioactivities of Tea Extracts from Six Species of Ardisia and Thein Effect on Growth Inhibition of HepG2 Cells. J. Ethnopharmacol., 130: 536-544
31. Obanda, M., Owuor, P. O. and Taylor, S. J. 1997. Flavonol Composition and Caffeine Content of Green Leaf as Quality Potential Indicators of Kenyan Black Teas. J. Sci. Food Agric., 74: 209-215.
32. Ojha, P., Bahadur K. T. and Sitaula, R. 2016. Physiochemical and Functional Quality Evaluation of Mandarin Peel Powder. J. Agr. Sci. Tech., 18: 575-582.
33. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med., 26: 1231-1237.
34. Rop, O., Mlcek, J., Jurikova, T., Neugebauerova, J. and Vabkova, J. 2012. Edible Flowers: A New Promising Source of Mineral Elements in Human Nutrition. Mole., 17: 6672-6683.
35. Rufino, M. S. M., Alves, R. E., Brito, E. S., Pérez-Jiménez, J., Saura Calixto, F. and Mancini-Filho, J., 2010. Bioactive Compounds and Antioxidant Capacities of 18 Non-Traditional Tropical Fruits from Brazil. Food Chem., 121: 996-1002.
36. Schmitzer, V., R. Veberic, G. Osterc. and F. Stampar. 2009. Changes in the Phenolic Concentration during Flower Development of Rose ‘KORcrisett’. J. Am. Soc. Hortic. Sci., 134:491-496.
37. Silva, F. C. 1999. Manual de Análises Químicas de Solos, Plantas e Fertilizantes. Embrapa Comunicação para Transferência de Tecnologia/Embrapa Solos/Embrapa Informática para Agricultura, Brasília, 370 PP.
38. Song, L., Wang, X., Zheng, X. and Huang, D. 2011. Polyphenolic Antioxidant Profiles of Yellow Camellia. Food Chem., 129: 351-357.
39. Souza, K, O., Moura, C. F. H., Brito, E. S. and Miranda, M. R. A. 2014. Antioxidant Compounds and Total Antioxidant Activity in Fruits of Acerola from cv. Flor Branca, Florida Sweet and BRS 366. Rev. Bras. Frutic., 36: 294-304
40. Strohecker, R. and Henning, H. M. 1967. Analisis de Vitaminas: Metodos Comprobados. Paz Montalvo, Madrid, 428 PP.
41. Tempesta, M. S. 2012. Review of Plant Phenolics and Human Health: Biochemistry, Nutrition and Pharmacology. J. Nat. Prod., 75: 1260-1260.
42. Uma-Maheswari, S., Mohankumar, J. B., and Uthira, L. 2012. Comparative Study on Antioxidant Activity of Organic and Conventionally Grown Roots and Tubers Vegetables in India. J. Environ. Agric. Food Chem., 11: 136-147.
43. VanderJagt, T. J., Ghattas, R., VanderJagt, D. J., Crossey, M. and Glew, R. H. 2002. Comparison of the Total Antioxidant Content of 30 Widely Used Medicinal Plants of New Mexico. Life Sci., 70: 1035-1040.
44. Vinokur, Y. and Rodov, V. 2006. Method for Determining Total (Hydrophilic and Lipophilic) Radical-Scavenging Activity in the Same Sample of Fresh Produce. Acta Hortic., 709:53-60.
45. Wongwattanasathien, O., Kangsadalampai, K. and Tongyonk, L. 2010. Antimutagenicity of Some Flowers Grown in Thailand. Food Chem. Toxic., 48: 1045-1051.
46. Yemn, E. W. and Willis, A. J. 1954. The Estimation off Carbohydrate in Plant Extracts by Antrone. Bioch. J., 57: 504-514.
47. Zeng, Y., Deng, M., Lv, Z and Peng, Y. 2014. Evaluation of Antioxidant Activities of Extracts from 19 Chinese Edible Flowers. Springer Plus, 3: 315. Doi: 10.1186/2193-1801-3-315.