Effects of Rhizobium leguminosarum Inoculation on Growth, Nitrogen Uptake and Mineral Assimilation in Vicia faba Plants under Salinity Stress

Authors
1 Laboratory of Biology and Biotechnology of Microorganisms, Faculty of Sciences Semlalia, Cadi Ayyad University, P. O. Box: 2390, Marrakech, Morocco.
2 Dresden University of Technology, Institute of Genetics, Helmholtzstr. 10, D-01069 Dresden, Germany.
3 Department of Biology, FST Errachidia, Moulay Ismail University, Errachidia, Morocco.
4 University Hassan 1st. Polydisciplinary, Faculty of Khouribga, BP.145, 25000 Khouribga, Morocco.
Abstract
Salt stress constitutes one of the most significant environmental constraints that limit legume production, especially in arid and semi-arid regions. This study aimed to evaluate the effect of salt stress (0, 60, and 120 mM of NaCl) on growth, nodulation process, nitrogen uptake and mineral nutrition content of Vicia faba L. plants inoculated with native Moroccan rhizobia isolated from root nodules of faba bean plants grown in the Marrakech-Haouz region. Three Rhizobium leguminosarum strains (RhOF34, RhOF125 and RhOF15), which had different tolerance to salinity, were used to inoculate faba bean plants. The results showed that chronic exposure to salinity affected growth and symbiotic parameters of V. faba differently. Shoot biomasses were reduced under salinity stress especially in the plants inoculated with the salt sensitive strain (RhOF15). The nodulation of faba bean roots sharply decreased under 120 mM salt treatment, particularly with the sensitive Rhizobium strain. The total nitrogen content decreased with increasing salinity, except for the plants inoculated with the tolerant strain RhOF34, which kept a high nitrogen content. Sodium and calcium concentration increased sharply in plant tissues with increasing salt stress, while the potassium concentration decreased. RhOF34 strain reduced Na+, Ca2+ and K+ absorption by faba bean plants. Inoculation with the salt tolerant strains RhOF125 and RhOF34 led to an increased plant biomass, nodules number, and nitrogen content; and seemed to protect faba bean plants against the toxic effects of salinity.

Keywords


1. Abdelmoumen, H., Filali-Maltouf, A., Neyra, M., Belabed, A. and El Idrissi, M. M. 1999. Effect of High Salts Concentrations on the Growth of Rhizobia and Responses to Added Osmotica. J. Appl. Microbiol., 86: 889-898.
2. Abdul Qados, A. 2011. Effect of Salt Stress on Plant Growth and Metabolism of Bean Plant (Vicia faba, L.). J. Saud. Soc. For. Agric. Sci., 10: 7-15.
3. Ahmed, S. 2009. Effect of Soil Salinity on the Yield and Yield Components of Mungbean. Pak. J. Bot., 1: 263-268.
4. Aragüés, R., Urdanoz, V., Çetin, M., Kirda, C., Daghari, H., Ltifi, W. and Douaik, A. 2011. Soil Salinity Related to Physical Soil Characteristics and Irrigation Management in Four Mediterranean Irrigation Districts. Agr. Water Manage., 98: 959-966.
5. Athar, H. R. and Ashraf, M. 2009. Strategies for Crop Improvement against Salinity and Drought Stress: An Overview. In: “Salinity and Water Stress: Improving Crop Efficiency”, (Eds.): Ashraf, M., Ozturk, M. and Athar, H. R. Springer, Heidelberg, Germany, PP. 1-16.
6. Ben Khaled, L. B., Gõmez, A., Honrubia, M. and Oihabi, A. 2003. Effet du Stress Salin en Milieu Hydroponique sur le Trèfle Inoculé par le Rhizobium. Agronomie, 23: 553-560.
7. Borucki, W. and Sujkowska, M. 2008. The Effects of Sodium Chloride-Salinity upon Growth, Nodulation, Root Nodule Structure of Pea (Pisum sativum L.) Plants. Acta Physiol. Plant, 30: 293-301.
8. Boscari, A., Van de Sype, G., Le Rudulier, D. and Mandon, K. 2006. Overexpression of BetS, a Sinorhizobium meliloti High-Affinity Betaine Transporter, in Bacteroids from Medicago sativa Nodules Sustains Nitrogen Fixation during Early Salt Stress Adaptation. Mol. Plant. Microbe Interact., 19: 896-903.
9. Brunel, B., Domergue, O., Maure, L., Brahic, P., Galiana, A., Josa, R. and El-Hajj, S. 2007. Potentialité des Associations Symbiotiques Plantes–Microorganismes pour Réhabiliter des Sites Fortement Dégradés en Milieu Méditerranéen. Cah. Agric., 16: 324-329.
10. Chen, S., Li, J., Wang, S., Hüttermann, A. and Altman, A. 2001. Salt, Nutrient Uptake and Transport, and ABA of Populus euphratica; a Hybrid in Response to Increasing Soil NaCl. Tree., 15: 186-194.
11. Cordovilla, M. D. P., Ligero, F., and Lluch, C. 1999a. Effect of Salinity on Growth, Nodulation and Nitrogen Assimilation in Nodules of Faba Bean (Vicia faba L.). Appl. Soil Ecol., 11: 1-7.
12. Cordovilla, M. D. P, Ligero, F. and Lluch, C. 1999b. Effects of NaCl on Growth and Nitrogen Fixation and Assimilation of Inoculated and KNO3 Fertilized Vicia faba L. and Pisum sativum L. Plants. Plant Sci., 140: 127-136.
13. Cuin, T. A., Tian, Y., Betts, S.A., Chalmandrier, R. and Shabala, S. 2009. Ionic Relations and Osmotic Adjustment in Durum and Bread Wheat under Saline Conditions. Funct. Plant Biol., 36: 1110-1119.
14. Dhaese, P., De Greve, H., Decraemer, H., Schell, J. and Van Mongatu, M. 1979. Rapid Mapping of Transposon Insertion and Deletion Mutations in the Large Ti-Plasmids of Agrobacterium tumefaciens. Nucleic Acid. Res., 7: 1837–1849
15. Dodd, I. C. and Pérez-Alfocea, F. 2012. Microbial Amelioration of Crop Salinity Stress. J. Exp. Bot., 63: 3415-3428.
16. El-Hamdaoui, A., Redondo-Nieto, M., Torralba, B., Rivilla, R., Bonilla, I. and Bolaños, L. 2003. Influence of Boron and Calcium on the Tolerance to Salinity of Nitrogen-Fixing Pea Plants. Plant soil, 251: 93-103.
17. Elsheikh, E. and Wood, M. 1990. Effect of Salinity on Growth, Nodulation and Nitrogen Yield of Chickpea (Cicer arietinum L.). J. Exp. Bot., 41: 1263-1269.
18. Faghire, M., Bargaz, A., Farissi, M., Palma, F., Mandri, B., Lluch, C., Tejera García, N. A., Herrera-Cervera, J. A., Oufdou, K. and Ghoulam C. 2011. Effect of Salinity on Nodulation, Nitrogen Fixation and Growth of Common Bean (Phaseolus vulgaris) Inoculated with Rhizobial Strains Isolated from the Haouz Region of Morocco. Symbiosis, 55: 69-75.
19. Flowers, T. 2004. Improving Crop Salt Tolerance. J. Exp. Bot., 55: 307-319.
20. Hassan, M. M. and Eissain, R. A. 2013. Molecular Characterization of Salt Tolerant Rhizobial Strains Induced by Gamma Rays Using RAPD Markers. New York Sci. J., 6: 36-41.
21. Heidari, M. and Jamshid, P. 2010. Interaction between Salinity and Potassium on Grain Yield, Carbohydrate Content and Nutrient Uptake in Pearl Millet. J. Agric. Biol. Sci. 5: 39-46.
22. Hussain, G., Al‐Jaloud, A. A., AI‐Shammary, S. F. and Karimulla, S. 1995. Effect of Saline Irrigation on the Biomass Yield, and the Protein, Nitrogen, Phosphorus, and Potassium Composition of Alfalfa in a Pot Experiment. J. Plant Nutr., 18: 2389-2408.
23. Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S. and Madden, T.L. 2008. NCBI BLAST: A Better Web Interface. Nucleic Acid. Res., 36: 5-9.
24. Jia, Y. and Gray, V. 2008. Growth Yield of Vicia faba L in Response to Microbial Symbiotic Associations. S. Afr. J. Bot., 74: 25-32.
25. Kassem, M., Cappelano, A. and Gounot, A. M. 1985. Effet du Chlorure de Sodium sur la Croissance In vitro, l’Infectivité et l’Efficience de Rhizobium meliloti. Mircen J. Appl. Microb., 1: 63-75.
26. Kumari, P. V., and Mesfin, Y. 2015. Testing Salt Tolerance to Boost on Chickpea (Cicer arietinum L. Mill Sp) Biomass/Cultivation. Global J. Res. Med. Plant. Indigen. Med., 4: 79-87.
27. Kuiper, D., Schuit, J. and Kuiper, P. 1990. Actual Cytokinin Concentrations in Plant Tissue as an Indicator for Salt Resistance in Cereals. Plant Soil, 123: 243-250.
28. Lahrouni, M., Oufdou, K., El Khalloufi, F., Baz, M., Lafuente, A., Dary, M. and Oudra, B. 2013. Physiological and Biochemical Defense Reactions of Vicia faba L.-Rhizobium Symbiosis Face to Chronic Exposure to Cyanobacterial Bloom Extract Containing Microcystins. Environ. Sci. Pollut. R., 20: 5405-5415.
29. MAPM, 2012. Situation de l’Agriculture Marocaine (Ministère de l’Agriculture et de la Pêche Maritime, Maroc). Available at: www.agriculture.gov.ma/pages/publications/situation-de-lagriculture-marocaine-n%C2%B010
30. Munns, R. 2002. Comparative Physiology of Salt and Water Stress. Plant Cell Environ., 25: 239-250.
31. Oufdou, K., Benidire, L., Lyubenova, L., Daoui, K., El Abidine Fatemi, Z. and Schröder, P. 2014. Enzymes of the Glutathione-Ascorbate Cycle in Leaves and Roots of Rhizobia-Inoculated Faba Bean Plants (Vicia faba L.) under Salinity Stress. Eur. J. Soil Biol., 60: 98-103.
32. Panda, S. and Khan, M. 2009. Growth, Oxidative Damage and Antioxidant Responses in Greengram (Vigna radiata L.) under Short‐Term Salinity Stress and its Recovery. J. Agron. Crop Sci., 195: 442-454.
33. Paranychianakis, N. V. and Chartzoulakis, K. S. 2005. Irrigation of Mediterranean Crops with Saline Water: From Physiology to Management Practices. Agric. Ecosyst. Environ., 106: 171-187.
34. Parida, A. K. and Das, A. B. 2005. Salt Tolerance and Salinity Effects on Plants: A Review. Ecotoxicol. Environ. Saf., 60: 324-349
35. Patel, N. T., Vaghela, P. M., Patel, A. D. and Pandey, A. N. 2011. Implications of Calcium Nutrition on the Response of Caesalpinia crista (Fabaceae) to Soil Salinity. Acta Ecol. Sinica, 31: 24-30.
36. Ramoliya, P., Patel, H. and Pandey, A. 2004. Effect of Salinization of Soil on Growth and Macro-and Micro-Nutrient Accumulation in Seedlings of Salvadora persica (Salvadoraceae). For. Ecol. Manage., 202: 181-193.
37. Rigaud, J. and Puppo, A. 1975. Indole-3-Acetic Acid Catabolism by Soybean Bacteroids. J. Gen. Microb., 88: 223-228.
38. Santiago, L. S., Lau, T. S., Melcher, P. J., Steele, O. C. and Goldstein, G. 2000. Morphological and Physiological Responses of Hawaiian Hibiscus tiliaceus Populations to Light and Salinity. Int. J. Plant Sci., 161: 99-106.
39. Semida, W., Taha, R., Abdelhamid, M. and Rady, M. 2014. Foliar-applied α-Tocopherol Enhances Salt-tolerance in Vicia faba L. Plants Grown under Saline Conditions. S. Afr. J. Bot., 95: 24-31.
40. Serraj, R., Fleurat‐Lessard, P., Jaillard, B. and Drevon, J. 1995. Structural Changes in the Innercortex Cells of Soybean Root Nodules Are Induced by Short‐Term Exposure to High Salt or Oxygen Concentrations. Plant Cell Environ., 18: 455-462.
41. Shrivastava P. and Kumar R. 2015. Soil Salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as One of the Tools for Its Alleviation. Saudi J. Biol. Sci., 22: 123-131.
42. Shoresh, M., Spivak, M. and Bernstein, N. 2011. Involvement of Calcium-Mediated Effects on ROS Metabolism in the Regulation of Growth Improvement under Salinity. Free Radical Bio. Med., 51: 1221-1234.
43. Singleton, P. W. and Bohlool, B. B. 1984. Effect of Salinity on Nodule Formation by Soybean. Plant Physiol., 74: 72-76.
44. Soussi, M., Khadri, M., Lluch, C. and Ocaña, A. 2001. Carbon Metabolism and Bacteroid Respiration in Nodules of Chick-Pea (Cicer arietinum L.) Plants Grown under Saline Conditions. Plant Biosyst., 135: 157-164.
45. Suárez R., Wong A., Ramírez M., Barraza A., Orozco M. C., Cevallos M. A., Lara M., Hernández G. and Iturriaga, G. 2008. Improvement of Drought Tolerance and Grain Yield in Common Bean by Overexpressing Trehalose-6-Phosphate Synthase in Rhizobia. Mol. Plant. Microbe. Interact., 21: 958–966
46. Sudhakar, C., Lakshmi, A. and Giridarakumar, S. 2001. Changes in the Antioxidant Enzyme Efficacy in Two High Yielding Genotypes of Mulberry (Morus alba L.) under NaCl Salinity. Plant Sci., 161: 613-619.
47. Sulieman, S. and Tran, L. S. P. 2015. Legume Nitrogen Fixation in a Changing Environment: Achievements and Challenges. Springer, 53.
48. Talaat, N., Ghoniem, A., Abdelhamid, M. and Shawky, B. 2015. Effective Microorganisms Improve Growth Performance, Alter Nutrients Acquisition and Induce Compatible Solutes Accumulation in Common Bean (Phaseolus vulgaris L.) Plants Subjected to Salinity Stress. Plant Growth Regul., 75: 281-295.
49. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol., 30: 2725-2729.
50. Valizadeh, M., Moharamnejad, S., Ahmadi, M., and Mohammadzadeh Jalaly, H. 2013. Changes in Activity Profile of Some Antioxidant Enzymes in Alfalfa Half-Sib Families under Salt Stress. J. Agr. Sci. Tech., 15: 801-809.
51. Van Berkum, P. and Fuhrmann, J. J. 2000. Evolutionary Relationships among the Soybean Bradyrhizobia Reconstructed from 16S rRNA Gene and Internally Transcribed Spacer Region Sequence Divergence. Int. J. Syst. Evol. Microbiol., 50: 2165-2172.
52. Velagaleti, R., Marsh, S., Kramer, D., Fleischman, D. and Corbin, J. 1990. Genotypic Differences in Growth and Nitrogen Fixation among Soybean (Glycine max, L. Merr cultivars) Grown under Salt Stress. Trop. Agr., 67: 169-177.
53. Vincent, J. M. 1970. A Manual for the Practical Study of Root Nodule Bacteria. IBP Handbook, 15, Blackwell Scientific Publications, Ltd, Oxford, England.
54. Yurekli, F., Porgali, Z. B. and Turkan, I. 2004. Variations in Abscisic Acid, Indole-3-Acetic Acid, Gibberellic Acid and Zeatin Concentrations in Two Bean Species Subjected to Salt Stress. Acta Biol. Cracov. Bot., 46: 201-212.
55. Zahran, H. H. 1991. Conditions for Successful Rhizobium-Legume Symbiosis in Saline Environments. Biol. Fert. Soil., 12: 73-80.
56. Zahran, H. H. 1999 Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate. Microbiol. Mol. Biol. R., 63: 968-989.
57. Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K. and Misopolinos, N. 2002. Impacts of Agricultural Practices on Soil and Water Quality in the Mediterranean Region and Proposed Assessment Methodology. Agr. Ecosyst. Environ., 88: 137-146.