Applying Geostatistical Methods for Analyzing Regional Flood Frequency in North of Iran (Case Study: Mazandaran Catchments)

Authors
Desert Studies College, Semnan University, Semnan, Islamic Republic of Iran.
Abstract
In Iran, applying geostatistics to regional analysis is said to be in its early stages. The fundamental principle of this technique emphasizes the interpolation of hydrological variables in physiographical, instead of geographical, spaces. This paper deals with the adaptation, application, and comparison of two regional analysis methods based on geostatistics. In this study, data from 38 gauging stations located in the north of Iran were used to investigate the performance of geostatistical methods in two physiographical spaces. Two multivariate analysis methods, namely, Canonical Correlation Analysis (CCA) and Principal Components Analysis (PCA), were used to identify physiographical spaces. Gaussian and exponential models were selected as the best theoretical variogram models in CCA and PCA spaces, respectively. Ordinary and simple kriging geostatistical estimators were also used for regional estimations in both physiographical spaces. Using the interpolation methods in CCA and PCA spaces, regional flood estimations were made for different return periods (10, 20, 50, and 100 years). Finally, performance of both models was studied using five statistical indices. The results showed that both methods had similar and satisfactory performance; however, regional estimations in CCA had higher accuracy and less uncertainty than those in PCA-space. Furthermore, the results indicated that the ordinary kriging method had better performance than the simple kriging method in both spaces and the best interpolation efficiency was observed in the CCA space.

Keywords


1. Alila, Y. 2000. Regional Rainfall Depth-Duration-Frequency Equations for Canada. Water Resour. Res., 36(7): 1767-1778.
2. Archfield, S. A., Pugliese, A., Castellarin, A., Skøien, J. O. and Kiang, J. E. 2013. Topological and Canonical Kriging for Design-Flood Prediction in Ungauged Catchments: an Improvement over a Traditional Regional Regression Approach. Hydrol. Earth Syst. Sci., 17: 1575–1588.
3. Burn, D. H. 1990. Evaluation of Regional Flood Frequency Analysis with a Region of Influence Approach. Water Resour. Res., 26(10): 2257–2265.
4. Castellarin, A., Burn, D.H. and Brath, A. 2001. Assessing the Effectiveness of Hydrological Similarity Measures for Flood Frequency Analysis. J. Hydrol., 241: 270–285.
5. Castellarin, A. 2014. Regional Prediction of Flow-Duration Curves Using a Three-Dimensional Kriging. J.Hydrol., 513: 179-191.
6. Castiglioni, S., Castellarin, A. and Montanari, A. 2009. Prediction of Low-Flow Indices in Ungauged Basins through Physiographical Space-Based Interpolation. J. Hydrol., 378: 272–280.
7. Castiglioni, S., Castellarin, A., Montanari, A., Skøien, J.O., Laaha, G. and Bloschl, G. 2011. Smooth Regional Estimation of Low-Flow Indices: Physiographical Space Based Interpolation and Top-Kriging. Hydrol. Earth Syst. Sci., 15: 715–727.
8. Chokmani, K. and Ouarda, T.B.M.J. 2004. Physiographical Space-Based Kriging for Regional Flood Frequency Estimation at Ungauged Sites. Water Resour. Res., 40: W12514.
9. De Marsily, G. and Ahmed, S. 1987. Application of Kriging Techniques in Groundwater Hydrology. J. Geol. Sci. India., 29: 57–82.
10. GS+TM: Geostatistics for the Environmental Sciences Version 9. Gamma Design Software, Plainwell, Michigan USA.
11. Guillemette, N., St-Hilaire, A., Ouarda T. B. M. J., Bergeron, N., Robichaud, E. and Bilodeau, L. 2009. Feasibility Study of a Geostatistical Modeling of Monthly Maximum Stream Temperatures in a Multivariate Space. J. Hydrol., 364: 1–12.
12. Hosking, J. R. M and Wallis, J. R. 2005. Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press, Cambridge, New York.
13. Hundecha, Y., Ouarda, T. B. M. J., and Ba´rdossy, A. 2008. Regional Estimation of Parameters of a Rainfall-Runoff Model at Ungauged Watersheds Using the ‘‘Spatial’’ Structures of the Parameters within a Canonical Physiographic-Climatic Space. Water Resour. Res., 44: W01427.
14. Isaaks, E. H. and Srivastava, R. M. 1989. Applied Geostatistics. Oxford Univ. Press, New York.
15. Joseph, G., Chokmani, K., Ouarda, T. B. M. J. and Saint-Hilaire, A. 2006. An Evaluation of the Robustness of Canonical Kriging for Regional Analysis of Stream Flows. Revue des Science de l’eau., 20(4): 367–380.
16. Journel, A. and Huijbregts, C. 1978. Mining Geostatistics. Academic Press, London, 600 PP.
17. Kamali Nezhad, M., Chokmani, K., Ouarda, T. B. M. J., Barbet, M. and Bruneau, P. 2010. Regional Flood Frequency Analysis Using Residual Kriging in Physiographical Space. Hydrol Process., 24: 2045-2055.
18. Kamali Nezhad, M., Ouarda, T. B. M. J., Chokmani, K., Barbet, M., Bruneau, P. and Adlouni, S.E. 2011. Assessment of Regional Estimation Error by Canonical Residual Kriging. Hydrol. Process., 25: 1418–1430.
19. Kouider, A., Gingras, H., Ouarda, T. B. M. J., Ristic-Rudolf, Z. and Bob´ee, B. 2002. Analyse Fr´equentielle Locale Etr´egionale et Cartographie des Crues au Qu´ebec. INRS-ETE, Ste-foy, Qu´ebec, Canada.
20. Laaha, G., Skøien, J. O. and Blöschl, G. 2014. Spatial Prediction on River Networks: Comparison of Top-Kriging with Regional Regression. Hydrol. Process., 28: 315–324.
21. Laaha, G., Skøien, J. O., Nobilis, F. and Blöschl, G. 2013. Spatial Prediction of Stream Temperatures Using Top-Kriging with an External Drift. Environ. Model. Assess., 18: 671–683.
22. Malekinezhad, H., Nachtnebel, H. P. and Klik, A. 2011. Regionalization Approach for Extreme Flood Analysis Using L-Moments. J. Agr. Sci. Tech., 13: 1183-1196.
23. Martel, B., Ouarda, T. B. M. J., Barbet, M., Bruneau, P., Latraverse, M. and Kamali Nezhad, M. 2011. Regional Frequency Analysis of Autumnal Floods in the Province of Quebec, Canada. Nat. Hazard., 59: 681-698.
24. Modarres R. 2008. Regional Frequency Distribution Type of Low Flow in North of Iran by L-Moments. Water Resour. Manage., 22(7): 823–841.
25. Mosaffaie, J. 2015. Comparison of Two Methods of Regional Flood Frequency Analysis by Using L-Moments. Water Resour., 42(3): 313-321.
26. Ouarda, T. B. M. J., Ba, K. M., Diaz-Delgado, C., Carsteanu, A., Chokmani, K., Gingras, H., Quentin, E., Trujillo, E. and Bobe´e, B. 2008. Intercomparison of Regional Flood Frequency Estimation Methods at Ungauged Sites for a Mexican Case Study. J. Hydrol., 348, 40–58.
27. Rao, A. R. and Hamed, K. H. 1997. Regional Frequency Analysis of Wabash River Flood Data by L-Moments. J. Hydrol. Eng., 2(4): 169-179.
28. Pugliese, A., Castellarin, A. and Brath, A. 2013. Geostatistical Prediction of Flow-Duration Curves. Hydrol. Earth Syst. Sci., 10: 13053–13091.
29. Rao, A. R. and Hamed, K. H. 1997. Regional Frequency Analysis of Wabash River Flood Data by L-Moments. J. Hydrol. Eng., 2(4): 169-179.
30. Rosbjerg, D. and Madsen, H. 1994. Uncertainty Measures of Regional Flood Frequency Estimators. J. Hydrol., 167: 209-224.
31. Sauquet, E. 2000. Unecartographie des e´Coulements Annuels Etmensuels d’un Grand Basin Versant Structure´e par la Topologie du re´Seauhydrographique, PhD. Thesis, Inst. Natl. Polytech., Grenoble, France.
32. Shu, C. and Ouarda, T. B. M. J. 2007. Flood Frequency Analysis at Ungauged Sites Using Artificial Neural Networks in Canonical Correlation Analysis Physiographic Space. Water Resour. Res., 43(7):W07438.
33. Skøien, J. O. and Bloschl, G. 2007. Spatiotemporal Topological Kriging of Runoff Time Series. Water Resour. Res., 43: W09419.
34. Skøien, J.O., Merz, R. and Bloschl, G. 2006. Top-Kriging Geostatistics on Stream Networks. Hydrol. Earth Syst. Sci., 10: 277–287.
35. Stedinger, J. R. and Tasker, G. D. 1985. Regional Hydrologic Analysis 1. Water Resour. Res., 21(9): 1421–1432.
36. Vormoor, K., Skaugen, T., Langsholt, E., Diekkruger, B. and Skøien, J.O. 2011. Geostatistical Regionalization of Daily Runoff Forecasts in Norway. Intel. J. River Basin Manage., 9(1): 3–15.
37. Yan, H. and Moradkhani, H. 2015. A Regional Bayesian Hierarchical Model for Flood Frequency Analysis. Stoch. Environ. Res. Risk. Assess., 29(3): 1019-1036.