Genetic Characterization of Agronomic, Physiochemical, and Quality Parameters of Dry Bean Landraces under Low-Input Farming

Authors
1 Western Macedonia University of Applied Studies, School of Agriculture Technology, Food Technology and Nutrition, Dep. of Agricultural Technology, Florina, 53100 Greece.
2 Hellenic Agricultural Organization - Demeter, Industrial and Fodder Crops Institute, 413 35 Larissa, Greece.
Abstract
Dry bean landraces could be cultivated under Low-Input (LI) farming conditions because of their yield stability and quality traits. The objective of this research was to evaluate and identify landraces with high yield and stable performance under LI environment and study the relationships among agronomical, physiochemical, and quality traits. Seven landraces of common bean (Phaseolus vulgaris L.) were evaluated in field trials under certified organic management during three consecutive growing seasons (2008-2010) at two different areas located in northern Greece in a RCBD with four replicates. Site per year was considered as one environment. A ranking of landraces according to seed yield potential indicated a group of five high yielding landraces, while Genetic Coefficient of Variation (GCV) for seed yield (9.80%) and number of pods/plant (9.57%) indicated useful genetic variability within landraces, combined with high heritability values (H2= 0.71 and 0.95, respectively). GGE biplot analysis for yield performance and stability indicated that landrace Kastoria fell within the scope of an ideal genotype, followed by three other promising landraces. Significant positive correlation was detected between cooking time and Ash (0.94**). High GCV values for hydration increase (16.77%) and cooking time (15.65%) combined with their high heritability (H2= 0.98 and 0.89, respectively) are of great interest for further genetic advancement. These results indicate that dry bean landraces may provide the appropriate differentiation in several important traits when cultivated under LI conditions, so, effort should be directed to exploit this variability for the development of new varieties suitable for LI agriculture.

Keywords


1. Acosta-Gallegos, J. A., Kelly, J. D. and Gepts, P. 2007. Prebreeding in Common Bean and Use of Genetic Diversity from Wild Germplasm. Crop Sci., 47: 44-59.
2. Angioi, S. A., Rau, D., Attene, G., Nanni, L., Bellucci, E., Logozzo, G., Negri, V., Spagnoletti, Zeuli, P. L. and Papa, R. 2010. Beans in Europe: Origin and Structure of the European Landraces of Phaseolusvulgaris. Theor. App. Gen., 121: 829-843.
3. Angioi, S. A., Rau, D., Nanni, L., Bellucci, E., Papa, R. and Attene, G. 2011. The Genetic Make-up of the European Landraces of the Common Bean. Plant Gen. Res., 9: 197-201.
4. Annicchiarico, P. 2002. Genotype×Environment Interaction: Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. FAO Plant Production and Protection Paper 174, FAO, Rome, Italy.
5. AOAC. 2000. Official Methods of Analysis. 17th Edition, Association of Official Agricultural Chemists, Washington DC.
6. Ayeh, E. 1988. Evidence for Yield Stability in Selected Landraces of Bean (Phaseolus vulgaris). Exp. Agr., 24: 367-373.
7. Beebe, S., Rengifo, J., Gaitan, E., Duque, M. C. and Tohme, J. 2001. Diversity and Origin of Andean Landraces of Common Bean. Crop Sci., 41: 854-862.
8. Bishnoi, S. and Khetarpaul, N. 1993. Variability in Physico-Chemical Properties and Nutrient Composition of Different Pea Cultivars. Food Chem., 47: 371-373.
9. Camacho Villa, T. C., Maxted, N., Scholten, M. and Forf-Lloyd, B. 2005. Defining and Identifying Crop Landraces. Plant Genetic Resources: Character. Eva., 3: 373-384.
10. Carbonell, S. A. M., Carvalho, C. R. L. and Pereira, V. R. 2003. Cooking Quality Parameters of Common Bean Genotypes, Sown in Different Seasons and Locations. Bragantia, 62: 369-379.
11. Ceccarelli, S. 1989. Wide Adaptation. How Wide? Euphytica, 40: 197-205
12. Chiorato, A. F., Carbonell, S.A.M., Bosetti, F., Sasseron, G. R., Lopes, R. L. T. and Azevedo, C. V. G. 2015. Common Bean Genotypes for Agronomic and Market-Related Traits in VCU Trials. Sci. Agric., 72: 34-40
13. Elia, F. M., Hosfield, G. L. and Uebersax, M. A. 1997. Genetic Analysis and Interrelationships between Traits for Cooking Time, Water Absorption, and Protein and Tannin Content of Andean Dry Beans. J. Am. Soc. Hortic. Sci., 122: 512-518.
14. Erskine, W., Tufail, M., Russell, A., Tyagi, M.C., Rahman, M. M. and Saxena, M. C. 1994. Current and Future Strategies in Breeding Lentil for Resistance to Biotic and Abiotic Stresses. Euphytica, 73: 127–135
15. Galvan, M. Z., Menendez-Sevillano, M. C., DeRon, A. M., Santalla, M. and Balatti, P. A. 2006. Genetic Diversity among Wild Common Beans from Northwestern Argentina Based on Morpho-Agronomic and RAPD Data. Gen. Res. Cr. Evol., 53: 891–900.
16. Garcia, R. A. V., Rangel, P. N., Bassinello, P. Z., Brondani, C., Melo, L. C., Sibov, S. T. and Vianello-Brondani, R. P. 2012. QTL Mapping for the Cooking Time of Common Beans. Euphytica, 186: 779-792.
17. Gómez, O.J., Blair, M. W., Frankow-Lindberg, B. E. and Gullberg, U. 2004. Molecular and Phenotypic Diversity of Common Bean Landraces from Nicaragua. Crop Sci., 44: 1412-1418.
18. Gonzalez, A. M., Monteagudo, A. B., Casquero, P. A., De Ron, A. M. and Santalla, M. 2006. Genetic Variation and Environmental Effects on Agronomical and Commercial Quality Traits in the Main European Market Classes of Dry Bean. Field Crop Res., 95: 336–347.
19. Iliadis, C. 2001. Effects of Harvesting Procedure, Storage Time and Climatic Conditions on Cooking Time of Lentils (Lens culinaris Medicus). J. Sci. Food Agric., 81: 590-593.
20. Karaköy, T., Baloch, F. D., Toklu, F. and Özkan, H. 2014. Variation for Selected Morphological and Quality-Related Traits among 178 Faba Bean Landraces Collected from Turkey. Plant Gen. Res., 12: 5-13.
21. Kargiotidou, A., Chatzivasiliou, E., Tzantarmas, C., Sinapidou, E., Papageorgiou, A., Skaracis, G. N. and Tokatlidis, I.S. 2014. Selection at Ultra-Low Density Identifies Plants Escaping Virus Infection and Leads towards High-Performing Lentil (Lens culinaris L.) Varieties. J. Agric. Sci., 152: 749-758
22. Kelly, J. D. and Bliss, F. A. 1975. Quality Affecting the Nutritive Value of Bean Seed Proteins. Crop Sci., 15: 757–760.
23. Leleji, O. I., Dickson, M. H., Crowder, L. V. and Bourke, J. B. 1972. Inheritance of Crude Protein Percentage and Its Correlation with Seed Yield in Beans Phaseolus vulgaris L. Crop Sci., 12: 168–171.
24. Mavromatis, A. G., Arvanitoyannis, I. S., Chatzitheodorou, V. A., Khah, E. M., Korkovelos, A. E. and Goulas, C. K. 2007. Landraces versus Commercial Common Bean Cultivars under Organic Growing Conditions: A Comparative Study Based on Agronomic Performance and Physicochemical Traits. Eur. J. Hortic. Sci., 72: 214-219.
25. Mavromatis, A. G., Arvanitoyannis, I. S., Chatzitheodorou, V. A., Kaltsa, A., Patsiaoura, I. and Nakas, C. T. 2012. A Comparative Study among Landraces of Phaseolus vulgaris L. and P. coccineus L. based on Molecular, Physicochemical and Sensory Analysis for Authenticity Purposes. Scientia Hortic., 144: 10-18.
26. McClean, P., Kami, J. and Gepts, P. 2004. Genomic and Genetic Diversity in Common Bean. In: “Legume Crop Genomics”, (Eds.): Wilson, R. F., Stalker, H. T. and Brummer, E. C. AOCS Press, Champaign, PP. 60-82.
27. Mekbib, F. 2003. Yield Stability in Common Bean (Phaseolus vulgaris L.) Genotypes. Euphytica, 130: 147-153.
28. Osborn, T. C. and Brown, J. W. 1988. Genetic Control of Bean Seed Protein. Critical Rev. Plant Sci., 7: 93-116.
29. Papadopoulos, I., Papathanasiou, F., Vakali, C. and Tamoutsidis, E. 2012. Local Landraces of Dry Beans (Phaseolus vulgaris L.): A Valuable Resource for Organic Production in Greece. Acta Hortic., 933: 75-81.
30. Papoutsi-Costopoulou, H. and Gouli-Vavdinoudi, E. 2001. Improving a Local Common Bean (Phaseolus vulgaris L.) Population for Yield, Seed Size and Earliness. Plant Var. Seed., 14: 25-34.
31. Paredes-Lopez, O., Reyes-Moreno, C., Montes-Rivera, R. and Carabez-Trejo, A. 1989. Hard-to-Cook Phenomenon in Common Beans-Influence of Growing Location and Hardening Procedures. Int. J. Food Sci. Tech., 24: 535-542.
32. Piergiovanni, A. R. and Lioi, L. 2010. Italian Common Bean Landraces: History, Genetic Diversity and Seed Quality. Divers., 2(6): 837-862.
33. Polignano, G. B. 1982. Breeding for Protein Percentage and Seed Weight in Phaseolus vulgaris L. J. Agric. Sci., 99: 191–197.
34. Proctor, J. P. and Watts, B. M. 1987. Effect of Cultivar, Growing Location, Moisture and Phytate Content on the Cooking Times of Freshly Harvested Navy Beans. Can. J. Plant Sci., 67: 923-926.
35. Raggi, L., Tiranti, B. and Negri, V. 2013. Italian Common Bean Landraces: Diversity and Population Structure. Gen. Res. Crop Evol., 60: 1515-1530.
36. Reyes-Bastidas, M., Reyes-Fernández, E.Z., López-Cervantes, J., Milán-Carrillo, J., Loarca-Piña, G. F. and Reyes-Moreno, M. 2010. Physicochemical, Nutritional and Antioxidant Properties of Tempeh Flour from Common Bean (Phaseolus vulgaris L.). Food Sci. Tech. Int., 16: 427–434.
37. Rondini, E. A., Barrett, K. G. and Bennink, M. B.2012. Nutrition and Human Health Benefits of Dry Beans and Pulses. In: “Dry Beans and Pulses Production, Processing and Nutrition”, (Eds.): Siddiq, M. and Uebersax, M. A. Blackwell Publishing Ltd., Oxford, UK, PP. 335-357.
38. SAS. 2004. JMP 5.1. A Business unit of SAS Institute Inc., Campus Drive, Cary, NC, USA 27513.
39. Shimelis, E. A. and Rakshit, S. K. 2005. Proximate Composition and Physico-Chemical Properties of Improved Dry Bean (Phaseolus vulgaris L.) Varieties Grown in Ethiopia. LWT-Food Sci. Tech., 38: 331-338.
40. Shellie, K. C.and Hosfield, G. L. 1991. Genotype×Environmental Effects on Food Quality of Common Bean: Resource-Efficient Testing pProcedures. J. Amer. Soc. Hortic. Sci., 116: 732-736.
41. Singh, S. P. 2001. Broadening the Genetic Base of Common Bean Cultivars: A Review. Crop Sci., 41: 1659–1675
42. Singh, S. P., Teran, H., Munoz, C. G., Osorno, J. M., Takegami, J. C. and Thung, M. 2003. Low Soil Fertility Tolerance in Landraces and Improved Common Bean Genotypes. Crop Sci., 43: 110–119.
43. Tokatlidis, I. S., Papadopoulos, I., Baxevanos, D. and Koutita, O. 2010. G×E Effects on Single-Plant Selection at Low Density for Yield and Stability in Climbing Dry Bean. Crop Sci., 50: 775-783.
44. Vetelainen, M., Negri, V. and Maxted, N. 2009. European Landraces on Farm Conservation, Management and Use. Bioversity International, Rome, Italy, Biovers. Tech. Bull., 15.
45. White, J. W. and Gonzalez, A. 1990. Characterization of the Negative Association between Seed Yield and Seed Size among Genotypes of Common Bean. Field Crop. Res., 23: 159–175.
46. White, J. W. and Montes-R, C. 2005. Variation in Parameters Related to Leaf Thickness in Common Bean (Phaseolus vulgaris L.). Field Crop, Res., 91: 7-21.
47. Zeven, A. C. 1998. Landraces: A Review of Definitions and Classifications. Euphytica, 104: 127–139.
48. Yan, W. 2002. Singular-Value Partition in Biplot Analysis of Multienvironment Trial Data. Agron. J., 94: 990-996.
49. Yan, W. and Kang, M. S. 2003. GGEbiplot Analysis: A Graphical Tool for Breeders, Geneticists and Agronomists. CRC Press, Boca Raton FL.