Rapid Screening of Apple Genotypes for Drought Tolerance by a Simplified Model of Canopy Conductance

Authors
1 Department of Horticulture and Landscape Architecture, Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana, Albania.
2 Environmental Measuring Systems (EMS), Brno, Czech Republic
Abstract
Expansion of apple growing to dry areas requires reliable approaches to select genotypes tolerant to water stress. We have simulated apple tree transpiration (Ec) from different commercial orchards and compared it with actual transpiration (Ea) derived from sap flow measurements. The modelling approach lies in rearranging a parameterized P–M Equation and incorporating in it a stomatal conductance model derived from meteorological variations. The model uses diurnal courses of variables instead of commonly used daily means. We then wrote a complex P–M Equation which already includes the canopy conductance as the function of radiation and vapour pressure deficit. For model calibration, an extensive experimental dataset of tree transpiration was collected from 2011 to 2013 in various sites of Albania and Kosovo, ranging from very warm to temperate. The daily pattern of canopy conductance for water vapour at canopy level provided by the model offers an unprecedented insight into rapid response to humidity of different cultivars as well as their light saturation levels. The satisfactory performance of this functional model should improve the precision of current empirical approaches followed to compute fruit tree water requirements and can be a promising tool for early and quick evaluation of water stress tolerance in apple genotypes.

Keywords


1. Annandale, J. G. and Stockle, C. O. 1994. Fluctuation of Crop Evapotranspiration Coefficients with Weather: A Sensitivity Analysis. Irri. Sci., 15: 1-7.
2. Auzmendi, I., Mata, M., Lopez, G., Girona, J. and Marsal, J. 2011. Intercepted Radiation by Apple Canopy Can Be Used as a Basis for Irrigation Scheduling. Agri. Water Manage., 98(5): 886-892.
3. Čermak, J., Kučera, J. And Nadezhdina, N. 2004. Sap Flow Measurements with Some Thermodynamic Methods, Flow Integration within Trees and Scaling up from Sample Trees to Entire Forest Stands. Tree., 18: 529-546
4. Cohen, S. and Naor, A. 2002. The Effect of Three Rootstocks on Water Use, Canopy Conductance and Hydraulic Parameters of Apple Trees and Predicting Canopy from Hydraulic Conductance. Plant Cell Env., 25(1): 17-28.
5. Dekker, S., Bouten, W. and Verstraten, J. 2000. Modelling Forest Transpiration from Different Perspectives. Hydro. Proc., 14: 251-260.
6. Dragoni D. and Lakso, A. N. 2008. An apple-specific ET model. In: “IX Int. Symp. on Integrating Canopy, Rootstock and Environmental Physiology in Orchard Systems”, 903: 1175-1180
7. Dragoni, D., Lakso, A. N. and Piccioni, R. M. 2005. Transpiration of Apple Trees in a Humid Climate Using Heat Pulse Sap Flow Gauges Calibrated with Whole-Canopy Gas Exchange Chambers. Agri. For. Meteo., 130(1–2): 85-94.
8. Fanjul, L. and Jones H. G. 1982. Rapid Stomatal Responses to Humidity. Planta, 154: 135
9. Fereres, E. and Soriano, M. A. 2007. Deficit Irrigation for Reducing Agricultural Water Use. J. Exp. Bot., 58(2): 147-159.
10. Forbes, J. C. and Watson, R. D. 1992. Plants in Agriculture. Cambridge University Press, USA, 46 PP.
11. Gong, D., Kang, S., Yao, L. and Zhang, L. 2007. Estimation of Evapotranspiration and Its Components from an Apple Orchard in Northwest China Using Sap Flow and Water Balance Methods. Hydro. Proc., 21(7): 931-938.
12. Gong, D., Kang, S., Zhang, L., Du, T. and Yao L. 2006. A Two-dimensional Model of Root Water Uptake for Single Apple Trees and Its Verification with Sap Flow and Soil Water Content Measurements. Agri. Water Manage., 83(1–2): 119-129.
13. Green, S. and Clothier, B. 1999. The Root Zone Dynamics of Water Uptake by a Mature Apple Tree. Plant Soil, 206(1): 61-77.
14. Huglin P. 1978. Nouveau Mode d’Evaluation des Possibilities Héliothermiques d’un Milieu Viticole. In: “Proceedings of the Symposium International sur l’Ecologie de la Vigne. Ministère de l’Agriculture et de l’Industrie Alimentaire”, Contança, PP. 89-98.
15. Jarvis, P. 1985. Coupling of Transpiration to the Atmosphere in Horticultural Crops: the Omega Factor. Acta Hort. (ISHS), 171: 187-206.
16. Jiří, K., Patricia, B., Marıá Soledad, J. and Josef, U. 2016. "Direct Penman–Monteith Parameterization for Estimating Stomatal Conductance and Modeling Sap Flow." Tree. 1-13.
17. Jones, H. G. 1987. Breeding for Stomatal Characters. In: “Stomatal Function”, (Eds.): Zeiger, E., Farquhar, G. D. and Cowan I. R. Standford University Press, Standford.
18. Jones, H. G. 2014. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. 3rd Edition, Cambridge University Press.
19. Jones H. G., Luton M. T., Higgs K. H., Hamer P. J. C. 1983. Experimental Control of Water Status in an Apple Orchard. J. Hortic. Sci., 58: 301-316.
20. Kullaj, E., Domi, H., Spahiu, T. and Thomaj, F. 2014. Behaviour of Apple Cultivars under a High Radiation and Temperature Regime of Western Plain in Albania. Acta Hort. (ISHS), 1038: 423-428
21. Kullaj, E., Lepaja, L., Avdiu, V., and Thomaj, F. 2016a. Modeling Water Requirements of Young Apple Rootstocks under Various Climates. Agri. Res. Tech.: Open Access J. 2(2): 555584. DOI: 10.19080/ARTOAJ.2016.01.555584
22. Kullaj, E. Lepaja, L., Avdiu, V. and Thomaj, F. 2016b. Modeling Hydraulic Dynamics at Different Levels of Fruit Tree Canopies under Abiotic Stress. Agri. Res. Tech.: Open Access J., 2(3): 555586. DOI: 10.19080/ARTOAJ.2016.01.555586
23. Kullaj, E. and Thomaj, F. 2013. Assessing Climatic Stress Effects on Apple (Malus domestica Borkh.) Using Various Plant Based Methods. Ege Üni. Ziraat Fakült. Dergisi., 1(Special Issue): 107-112.
24. Kullaj, E., Zotaj, A. and ÇAkalli, A. 2013. Grape-Growing Zoning in Albania Using Viticultural Climatic Indices. Ege Üni. Ziraat Fakült. Dergisi., 2(Special Issue): 455-460.
25. Kumar R., Jat M. K., Shankar V., Methods to Estimate Irrigated Reference Crop Evapotranspiration a Review, Water Sci. Tech. 66(3): 525.
26. Li, F., Cohen, S., Naor, A., Shaozong, K. and Erez, A. 2002. Studies of Canopy Structure and Water Use of Apple Trees on Three Rootstocks. Agri. Water Manage., 55(1): 1-14.
27. Lindroth, A., Čermák, J., Kučera, J., Cienciala, E. and Eckersten H. 1995. Sap Flow by the Heat-Balance Method Applied to Small-Size Salix Trees in a Short-Rotation Forest. Biom. Bioen., 8: 7-15.
28. Lohammar, T., Larsson, S., Linder, S. and Falk, S. O. 1980. Fast–Simulation Models of Gaseous Exchange in Scots Pine. In: “Structure and Function of Northern Coniferous Forests: An Ecosystem Study”, (Ed.): Persson, T. Ecol. Bull., (Stockholm), 32: 505-523.
29. Monteith, J. L. 1977. Climate and Efficiency of Crop Production in Britain. Philos. Trans. Roy. Soc. Lond. Ser. B: Biol. Sci., 281(980): 277-294.
30. Penman, H. L. 1948. Natural Evaporation from Open Water, Bare Soil and Grass. In: “Proceedings of the Royal Society of London”. A: Math., Phys. Eng. Sci., 193(1032): 120-145. The Royal Society.
31. Thorpe, M. R., Warrit, B. and Landsberg, J. J. 1980. Responses of Apple Leaf Stomata: A Mdel for Single Leaves and a Whole Tree. Plant Cell Env., 3: 23.
32. Villalobos, F. J., Testi, L., and Moreno–Perez M. F. 2009. Evaporation and Canopy Conductance of Citrus Orchards. Agri. Water Manage., 96(4): 565-573.
33. Villalobos, F. J., Testi, L., Orgaz, F., García-Tejera, O., Lopez-Bernal, A., González-Dugo, M. G., Ballester–Lurbe, C., Castel, J. R., Alarcón–Cabañero, J. J., Nicolás–Nicolás, E., Girona, J., Marsal, J. and Fereres, E. 2013. Modelling Canopy Conductance and Transpiration of Fruit Trees in Mediterranean Areas: A Simplified Approach. Agri. For. Meteo., 171: 93-103.
34. Warrit, B., Landsberg, J. J. and Thorpe, M. R. 1980. Responses of Apple Leaf Stomata to Environmental Factors. Plant Cell Env., 3: 13.
35. Watson, R. L., Landsberg, J. J. and Thorpe, M. R. 1978. Photosynthetic Characteristics of the Leaves of ‘Golden Delicious’ Apple Trees. Plant Cell Env., 1: 51.