Identification of Sugar Beet Flowering Genes Based on Arabidopsis Homologous Genes

Authors
1 Department of Biotechnology, Bu-Ali Sina University, Hamedan, Islamic Republic of Iran.
2 Sugar Beet Seed Institute, Agricultural Research, Education and Extension Organization (AREEO) Karaj, Islamic Republic of Iran.
Abstract
Transition from vegetative to reproductive growth is an important stage in plant’s life. Flowering pathways including photoperiod, vernalization, gibberellins, and autonomous pathway are regulated by different genes. Identification of flowering genes is essential for the development of bolting-resistant sugar beet cultivars. In this study, a set of 118 Arabidopsis thaliana genes involved in flowering time control were used as a reference to identify homologous counterparts in Expressed Sequence Tags (ESTs) and Transcriptome Shotgun Assembly (TSA) sequence of sugar beet. Based on obtained ESTs, primers were designed for Suppressor of Frigida 4 (SUF4), Curly Leaf (CLF), Constitutive Photomorphogenesis1 (COP1), and Cycling Dof Factor (CDF) genes. SUF4 and CLF are components of vernalization pathway and COP1 and CDF are in photoperiod pathway. The sequence regions of these genes were amplified using cDNA PCR technique, and compared with other identified sequences in Gene Bank. Four genes namely CLF, COP1, CDF and SUF4 were deposited in Gene Bank. Results showed that most of the flowering pathway genes in Arabidopsis are detectable in sugar beet which can be contributed to the understanding of the genetic control of bolting resistance.

Keywords


1. Abbasi, Z., Arzani, A. and Majidi, M. M. 2014. Evaluation of Genetic Diversity of Sugar Beet (Beta vulgaris L.) Crossing Parents Using Agro-Morphological Traits and Molecular Markers. J. Agr. Sci. Tech., 16: 1397-1411.
2. Abou-Elwafa, S. F., Büttner, B., Chia, T., Schulze-Buxloh, G., Hohmann, U., Mutasa-Göttgens, E., Jung, C. and Müller, A. E. 2010. Conservation and Divergence of Autonomous Pathway Genes in the Flowering Regulatory Network of Beta vulgaris. J. Exp. Bot.,62:3359-3374.
3. Bakooie, M., Pourjam, E., Mahmoudi, S. B., Safaie, N. and Naderpour, M. 2015. Development of an SNP Marker for Sugar Beet Resistance/Susceptible Genotyping to Root-Knot Nematode. J. Agr. Sci. Tech., 17: 443-454.
4. Blázquez, M. A., Green, R., Nilsson, O., Sussman, M. R. and Weigel, D. 1998. Gibberellins Promote Flowering of Arabidopsis by Activating the LEAFY Promoter. Plant Cell Online, 10: 791-800.
5. Boss, P. K., Bastow, R. M., Mylne, J. S. and Dean, C. 2004. Multiple Pathways in the Decision to Flower: Enabling, Promoting, and Resetting. Plant Cell Online, 16: S18-S31.
6. Chia, T. Y. P., Müller, A., Jung, C. and Mutasa-Göttgens, E. S. 2008. Sugar Beet Contains a Large CONSTANS-LIKE Gene Family Including a CO Homologue that Is Independent of the Early-Bolting (B) Gene Locus. J. Exp. Bot., 59: 2735-2748.
7. Dally, N., Xiao, K., Holtgrawe, D., and Jung, C., 2014. The B2 Flowering Time Locus of Beet Encodes a Zinc Finger Transcription Factor, Proc. Natl. Acad. Sci. USA 111, 10365-10370.
8. Deng, X. W., Caspar, T. and Quail, P. H. 1991. COP1: A Regulatory Locus Involved in Light-Controlled Development and Gene Expression in Arabidopsis. Genes Dev., 5: 1172-1182.
9. Dohm, J. C., Minoche, A. E., Holtgrawe, D., Capella-Gutierrez, S., Zakrzewski, F., Tafer, H., Rupp, O., Sorensen, T. R., Stracke, R., Reinhardt, R., Goesmann, A., Kraft, T., Schulz, B., Stadler, P. F., Schmidt, T., Gabaldon, T., Lehrach, H., Weisshaar, B., and Himmelbauer, H., 2014. The Genome of the Recently Domesticated Crop Plant Sugar Beet (Beta vulgaris), Nature 505: 546-549.
10. Fornara, F., Panigrahi, K. C. S., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J. A. and Coupland, G. 2009. Arabidopsis DOF Transcription Factors Act Redundantly to Reduce Constans Expression and Are Essential for a Photoperiodic Flowering Response. Dev. Cell, 17: 75-86.
11. Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E. M. and Coupland, G. 1997. A Polycomb-Group Gene Regulates Homeotic Gene Expression in Arabidopsis. Nature, 386: 44-51.
12. Herwig, R., Schulz, B., Weisshaar, B., Hennig, S., Steinfath, M., Drungowski, M., Stahl, D., Wruck, W., Menze, A., O'Brien, J., Lehrach, H. and Radelof, U., 2002. Construction of a ‘Unigene’ cDNA Clone Set by Oligonucleotide Fingerprinting Allows Access to 25000 Potential Sugar Beet Genes. Plant J., 32: 845-857.
13. Imaizumi, T. 2010. Arabidopsis Circadian Clock and Photoperiodism: Time to Think about Location. Curr. Opinion Plant Biol., 13: 83-89.
14. Imaizumi, T., Schultz, T. F., Harmon, F. G., Ho, L. A. and Kay, S. A. 2005. FKF1 F-Box Protein Mediates Cyclic Degradation of a Repressor of Constans in Arabidopsis. Sci., 309: 293-297.
15. Jang, S., Marchal, V., Panigrahi, K. C. S., Wenkel, S., Soppe, W., Deng, X. -W., Valverde, F. and Coupland, G. 2008. Arabidopsis COP1 Shapes the Temporal Pattern of CO Accumulation Conferring a Photoperiodic Flowering Response. EMBO J., 27: 1277-1288.
16. Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R. and Dean, C. 2000. Molecular Analysis of FRIGIDA, a Major Determinant of Natural Variation in Arabidopsis Flowering Time. Sci., 290: 344-347.
17. Jordan, B. R. 2006. The Molecular Biology and Biotechnology of Flowering. CABI.
18. Jung, C. and Muller, A. 2009. Flowering Time Control and Applications in Plant Breeding. Trend. Plant Sci .,14: 563 - 573.
19. Jung, S. and Main, D. 2014. Genomics and Bioinformatics Resources for Translational Science in Rosaceae. Plant Biotech. Rep., 8: 49-64.
20. Kim, D. -H., Zografos, B. R. and Sung, S. 2010. Mechanisms Underlying Vernalization-Mediated VIN3 Induction in Arabidopsis. Plant Signal. Behav., 5: 1457-1459.
21. Kim, S. Y. and Michaels, S. D. 2006. Suppressor of FRI 4 Encodes a Nuclear-Localized Protein that Is Required for Delayed Flowering in Winter-Annual Arabidopsis. Dev., 133: 4699-4707.
22. Langridge, J. 1957. Effect of Day-Length and Gibberellic Acid on the Flowering of Arabidopsis. Nature, 180: 36-37.
23. Li, D., Liu, C., Shen, L., Wu, Y., Chen, H., Robertson, M., Helliwell, C. A., Ito, T., Meyerowitz, E. and Yu, H. 2008. A Repressor Complex Governs the Integration of Flowering Signals in Arabidopsis. Dev. Cell, 15: 110-120.
24. Michaels, S. D. and Amasino, R. M. 1999. Flowering Locus C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. Plant Cell Online, 11: 949-956.
25. Michaels, S. D. and Amasino, R. M. 2000. Memories of Winter: Vernalization and the Competence to Flower. Plant Cell Environ., 23: 1145-1153.
26. Moreno-Risueno, M., Martínez, M., Vicente-Carbajosa, J. and Carbonero, P. 2007. The Family of DOF Transcription Factors: From Green Unicellular Algae to Vascular Plants. Mol. Genet. Genom., 277: 379-390.
27. Mouhu, K., Hytonen, T., Folta, K., Rantanen, M., Paulin, L., Auvinen, P. and Elomaa, P. 2009. Identification of Flowering Genes in Strawberry, a Perennial SD Plant. BMC Plant Biol., 9: 122.
28. Nakagawa, M. and Komeda, Y. 2004. Flowering of Arabidopsis COP1 Mutants in Darkness. Plant Cell Physiol., 45: 398-406.
29. Pin, P. A., Benlloch, R., Bonnet, D., Wremerth-Weich, E., Kraft, T., Gielen, J. J. L. and Nilsson, O. 2010. An Antagonistic Pair of FT Homologs Mediates the Control of Flowering Time in Sugar Beet. Sci., 330: 1397-1400.
30. Pin, P. A., Zhang, W., Vogt, S. H., Dally, N., Büttner, B., Schulze-Buxloh, G., Jelly, N. S., Chia, T. Y., Mutasa-Göttgens, E. S. and Dohm, J. C. 2012. The Role of a Pseudo-Response Regulator Gene in Life Cycle Adaptation and Domestication of Beet. Curr. Biol., 22: 1095-1101.
31. Reeves, P. A., He, Y., Schmitz, R. J., Amasino, R. M., Panella, L. W. and Richards, C. M. 2007. Evolutionary Conservation of the Flowering Locus C-Mediated Vernalization Response: Evidence from the Sugar Beet (Beta vulgaris). Gene., 176: 295-307.
32. Schrader, A. and Uhrig, J. F. 2013. MIDGET Cooperates with COP1 and SPA1 to Repress Flowering in Arabidopsis thaliana. Plant Signal. Behav., 8: e25600.
33. Sheldon, C. C., Burn, J. E., Perez, P. P., Metzger, J., Edwards, J. A., Peacock, W. J. and Dennis, E. S. 1999. The FLF MADS Box Gene: A Repressor of Flowering in Arabidopsis Regulated by Vernalization and Methylation. Plant Cell Online, 11: 445-458.
34. Wood, C. C., Robertson, M., Tanner, G., Peacock, W. J., Dennis, E. S. and Helliwell, C. A. 2006. The Arabidopsis thaliana Vernalization Response Requires a Polycomb-Like Protein Complex that also Includes Vernalization Insensitive 3. Proceed. Nation. Acad. Sci., 103: 14631-14636.
35. Yanagisawa, S. 2002. The DOF Family of Plant Transcription Factors. Trend. Plant Sci., 7: 555-560.