Green Synthesis of Silver Nano-particles Using Kelussia odoratissima Mozaff. Extract and Evaluation of its Antibacterial Activity

Authors
1 Department of Horticulture, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran.
2 Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Islamic Republic of Iran.
3 Pharmaceutics Department, Faculty of Pharmacy, Mashhad University of Medical Science, Mashhad, Islamic Republic of Iran.
Abstract
In this research Kelussia odoratissima Mozaff. leaf extract was used for the green synthesis of silver nanoparticles (AgNPs). At first we compared antioxidant activity of different extracts of K. odoratissima. Then solution containing silver nitrate was treated with the extract which showed high antioxidant activity. Synthesized AgNPs were evaluated by analyzing the excitation of surface plasmon resonance. TEM analysis was also used for nanoparticle characterization. Antibacterial activity of the solution containing AgNPs was measured by microdilution test. Common food contaminant bacteria such as gram-positive (Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes) and gram-negative (Escherichia coli O157: H7, Salmonella enterica and Pseudomonas aeruginosa)were used for the evaluation. The aqueous extract showed the highest antioxidant activity and the solution was used for the green synthesis of AgNPs. The particle diameters were calculated to be 20-40nm with -17 to -19.9 mV zeta potential. The TEM micrographs showed that the AgNPs are nearly spherical in shape and highly monodispersed. MIC of the AgNPs against gram-positive and gram-negative bacteria was between 0.012-0.025 and 0.006-0.012 mg/ml respectively.

Keywords


1. Abdalla, A E. and Roozen, J. P. 1999. Effect of Plant Extracts on the Oxidative Stability of Sunflower Oil and Emulsion. Food Chem., 64: 323–329.
2. Ahmad, N. S. S., Alam, Md. K., Singh, V. N., Shamsi, S. F., Mehta, B. R. and Anjum, F. 2010. Rapid Synthesis of Silver Nanoparticles Using Dried Medicinal Plant of Basil. Colloid. Surf. B: Biointerfa., 81: 81-86.
3. Ahmadi, F., Kadivar, M. and Shahedi, M. 2007. Antioxidant Activity of Kelussia odoratissima Mozaff. in Model and Food Systems. Food Chem. 105(1): 57-64.
4. Ali, M. Y., Rahman, M. M. Rahman, A., Basaglia, M., Rahman, M. M. Sultana, T. and Casella, S. 2014. Isolation of Bacillus spp. from Soil and an Evaluation of Their Sensitivity towards Different Extracts and Essential Oils of Cumin (Cuminum cyminum L.). J. Agr. Sci. Tech., 16: 623-633.
5. Ali, S. M., Anuradha, V., Yogananth, N., Rajathilagam, R., Chanthuru, A. and Mohamed Marzook, S. 2015. Green Synthesis of Silver Nanoparticle by Acanthus ilicifolius Mangrove Plant against Armigeressu balbatus and Aedesaegypti mosquito larvae. Int. J. Nano Dimension, 6(2): 197-204.
6. Banu, A., Rathod, V. and Ranganath, E. 2011. Silver Nanoparticle Production by Rhizopus stolonifer and Its Antibacterial Activity against Extended Spectrum β-Lactamase Producing (ESBL) Strains of Enterobacteriaceae. Material. Res. Bull., 46: 1417–1423.
7. Callegari, A. T. D. and Chergui, M. 2003. Photochemically Grown Silver Nanoparticles with Wavelength-Controlled Size and Shape. Nano Lett., 3(11): 1565-1568.
8. Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A. and Sastry, M. 2006. Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe vera Plant Extract. Biotechnol. Progress, 22(2): 577-83.
9. Duduku Krishnaiah, R. S. and Nithyanandam, R. 2010. A Review of the Antioxidant Potential of Medicinal Plant Species. Food Bioprod. Process., 10: 1016-1033.
10. Goudarzi, Gh. R., Saharkhiz, M. J., Sattari, M. and Zomorodian, K. 2011. Antibacterial Activity and Chemical Composition of Ajowan (Carum copticum Benth. and Hook) Essential Oil. J. Agr. Sci. Tech., 13: 203-208.
11. Guidelli, E. J., Ramos, A. P., Zaniquelli, M. E. and Baffa, O. 2011. Green Synthesis of Colloidal Silver Nanoparticles Using Natural Rubber Latex Extracted from Hevea brasiliensis. Spectrochimica Acta Part A, Mol. Biomol. Spectroscopy, 82(1): 140-145.
12. Jin, S. and Ye, K. 2007. Nanoparticle-Mediated Drug Delivery and Gene Therapy. Biotechnol. Progress, 23(1): 32-41.
13. Jin, R. C., Hao, Y. C., Metraux, E., Schatz, G. S. and Mirkin, C. A. 2003. Controlling Anistropic Nanoparticle Growth through Plasmon Excitation. Nature, 425: 487-490.
14. Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H., and Cho, M. H. 2007. Antimicrobial Effects of Silver Nanoparticles. Nanomed.: Nanotechnol. Biol. Med., 3(1): 95-101.
15. Lkhagvajav, N. Y. I., Çelik, E., Koizhaiganova, M. and Sari, Ö. 2011. Antimicrobial Activity of Colloidal Silver Nanoparticles Prepared by Sol-Gel Methods. Digest J. Nanomater. Biostruc., 6(1): 149-154.
16. Maisuthisakul, P. S. M. and Pongsawatmanit, R. 2007. Assessment of Phenolic Content and Free Radical-Scavenging Capacity of Some Thai Indigenous Plants. Food Chem., 100: 1409–1418.
17. Martınez-Castanon, G. A., Martınez-Gutierrez, F., Martınez-Mendoza, J. R. and Ruiz, F. 2008. Synthesis and Antibacterial Activity of Silver Nanoparticles with Different Sizes. J. Nanopart. Res., 10: 1343–1348.
18. Mashreghi, M., Azizi, M., Oroojalian, F. and Shah Tahmasebi, N. 2014. Study on the Chemical Constituents and Antibacterial Activity of Kelussia odoratissima and Teucrium polium Essential Oils against Some Food Borne Pathogens. J. Hort. Sci., 28(4): 487-495.
19. Mukunthan, K. S., 2012. Cashew Apple Juice (Anacardium occidentale L.) Speeds up the Synthesis of Silver Nanoparticles. Int. J. Green Nanotechnol., 4(2): 71-9.
20. Oroojalian, F., Kasra-Kermanshahi, R., Azizi, M. and Bassami, M. R. 2010. Phytochemical Composition of the Essential Oils from Three Apiaceae Species and Their Antibacterial Effects on Food-Borne Pathogens. Food Chem., 120: 765–770.
21. Philip, D. 2010. Green Synthesis of Gold and Silver Nanoparticles Using Hibiscus rosa sinensis. Physica E., 42(5): 1417–1424.
22. Rai, M. Y. A. and Gade, A. 2009. Silver Nanoparticles as a New Generation of Antimicrobials. Biotechnol. Adv., 27: 76–83.
23. Rathod, V. and Ranganath, E. 2011. Synthesis of Monodispersed Silver Nanoparticles by Rhizopus stolonifer and Its Antibacterial Activity against MDR Strains of Pseudomonas aeruginosa from Burnt Patients. Int. J. Environ. Sci., 1(7): 1582-1592.
24. Rodríguez-León, E., Iñiguez-Palomares, R., Elena Navarro, R., Ronaldo Herrera-Urbina, R., Tánori, J. Iñiguez-Palomares, C. and Maldonado, A. 2013. Synthesis of Silver Nanoparticles Using Reducing Agents Obtained from Natural Sources (Rumex hymenosepalus extracts. Nanoscale Res. Lett., 8(318).
25. Roopan, S. M., Rohita, G., Madhumitha, A. R. A., Kamaraj, C., Bharathia, A. and Surendra, T. V. 2013. Low-Cost and Eco-Friendly Phyto-Synthesis of Silver Nanoparticles Using Cocos nucifera Coir Extract and Its Larvicidal Activity. Indust. Crop Product, 43: 631–635.
26. Sadeghi, B. 2014. Green Synthesis of Silver Nanoparticles Using Seed Aqueous Extract of Olea europaea. Int. J. Nano Dimension, 5(6): 575-581.
27. Sadowski, Z., Maliszewska, I. H., Grochowealska, B., Polowczyk, I. and Kozlecki, T. 2008. Synthesis of Silver Nanoparticles Using Microorganisms. Mater. Sci., 26(2): 419-424.
28. Singh, S., Saikia, J. P. and Buragohain, A. K. 2013. A Novel 'Green' Synthesis of Colloidal Silver NanoParticles (SNP) Using Dillenia indica Fruit Extract. Colloid. Surf. B, Biointerfa., 102: 83-85.
29. Soria, E. A., Goleniowski, M. E., Cantero, J. J. and Bongiovanni, G. A. 2008. Antioxidant Activity of Different Extracts of Argentinian Medicinal Plants against Arsenic-Induced Toxicity in Renal Cells. Human Exp.Toxicol., 27(4): 341-346.
30. Stanojevic, L., Stankovic, M., Nikolic, V., Nikolic, L., Ristic, D., Canadanovic-Brunet, J., and Tumbas, V., 2009. Antioxidant Activity and Total Phenolic and Flavonoid Vontents of Hieracium pilosella L. Extracts. Sensor. (Basel), 9(7): 5702-5714.
31. Sukirtha R., Priyanka, K. M., Antony, J. J., Kamalakkannan, S., Thangam, R. Gunasekaran, P., Krishnan, M. and Achiraman, Sh. 2011. Cytotoxic Effect of Green Synthesized Silver Nanoparticles Using Melia azedarach against In Vitro HeLa Cell Lines and Lymphoma Mice Model. Process Biochem., 10: 10-16.
32. Vijaykumar, P. P. N., Pammi, S. V. N., PratapKollu, V. V., Satyanarayana, K. and Shameem U. 2014. Green Synthesis and Characterization of Silver Nanoparticles Using Boerhaavia diffusa Plant Extract and Their Anti-Bacterial Activity. Indust.Crop. Prod., 52: 562–56.
33. Virender, K. S., Ria, A. and Yekaterina, Lin, Y., 2009. Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities. Adv. Colloid Interface Sci., 145: 83-96.
34. Yilmaz, M. T. H., Akif Kilic, M., Bayram, E., Cicek, A., Mete, A. and Ulug, B. 2011. Biosynthesis of Silver Nanoparticles Using Leaves of Stevia rebaudiana. Mater. Chem. Phys., 130: 1195-1202.
35. Zeng, Q., Jiang, X., Yu, A. and Lu, G. M. 2007. Growth Mechanisms of Silver Nanoparticles: A Molecular Dynamics Study. Nanotechnol., 18(3): 035708.