A Fuzzy Approach for Relating a Pomegranate Maturity Index with to Solar Net Radiation

Authors
1 Department of Economic and Financial Studies, Universitas Miguel Hernández. Avda. de la Universidad, s/n, 03202. Elche. (Alicante)Spain.
2 Department of Economic and Financial Studies, Universitas Miguel Hernández. Avda. de la Universidad, s/n, 03202. Elche. Alicante.
3 Department of Plant Science and Microbiology, Universitas Miguel Hernandez, Ctra Beniel 3.2, 03312 Orihuela (Alicante), Spain.
4 Department of Physics and Computer Architecture, Universitas Miguel Hernandez, Ctra Beniel 3.2, 03312 Orihuela (Alicante), Spain.
Abstract
Pomegranate fruit maturity status is commonly assessed based on external (skin) colour, juice colour and acidity of juice. Some researchers have studied the correlation between the parameters of the skin colour and acidity, total soluble solids, citric acid and anthocyanins. This study describes the relationship existing between solar radiation and a colorimetric maturity index in the pomegranate varietal group “Mollar de Elche”. We propose a fuzzy methodology. The aim of this kind of study is to obtain on estimation a range of possible values that reflects reality. Using this methodology four phases were obtained, in which there is no relationship between radiation and the colorimetric Maturity Index (MIc) in phases 1 and 4, but there is such a relationship in phases 2 and 3. Fuzzy math demonstrates the positive relationship between radiation and MIc, confirming that fuzzy regression is appropriate for making estimations that reflect reality among variables showing a weak relationship. There is a high degree of uncertainty in the relationship between the colorimetric maturity index and the incident radiation. The individual values of radiation do not correspond to one sole value of MIc, but to a wide range of the same, due to several factors, such as fruit orientation, luminosity, etc. Fuzzy math reveals the positive relationship between net radiation and MIc in phases 2 and 3. All this shows that the fuzzy regression may be appropriate for making estimations reflect reality when the variables show a weak relationship.

Keywords


1. Al-Maiman, S. A. and Ahnad, S. A. 2002. Changes in Physical and Chemical Properties during Pomegranate (Punica granatum L.) Fruit Maturation. Food Chem., 76: 437-441.
2. Al-Said, F. A., Opara, L. U. and Al-Yahyai, R. A. 2009. Physico-Chemical and Textural Quality Attributes of Pomegranate Cultivars (Punica granatum L.) Grown in the Sultanate of Oman. J. Food Eng., 90: 129-134.
3. Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. 1998. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements. Paper 56, FAO Irrigation and Drainage.
4. Bell, C. and Hawthorne, S. 2008. Ellagic Acid Pomegranate and Prostate Cancer: A Mini Review. J. Pharm. Pharmacol., 60: 139-144.
5. Bisserier, A., Boukezzoula, R. and Galichet, S. 2010. Linear Fuzzy Regression Using Trapezoidal Fuzzy Intervals. J. Uncertain Syst., 4(1): 59–72.
6. Brotons, J. M., Manera, J., Conesa, A. and Porras I. 2013. A Fuzzy Approach to the Loss of Green Colour in Lemon (Citrus lemon L. Burm. f.) Rind during Ripening. Comput. Electron. Agr., 98: 222–232.
7. Calín-Sánchez, A., Martínez, J. J., Vázquez-Araújo, L., Burló, F., Melgarejo, P. and Carbonell-Barrachina, A. A. 2011. Volatile Composition and Sensory Quality of Spanish Pomegranates (Punica granatum L.). J. Sci. Food Agric., 91: 586–592.
8. Dafny-Yalin, M., Glazer, I., Bar-Ilan, I., Kerem, Z., Holland, D. and Amir, R. 2010. Colour, Sugars and Organic Acids Composition in Aril Juices and Peel Homogenates Prepared from Different Pomegranate Accessions. J. Agric. Food Chem., 58: 4342-4352.
9. Du Bois, D. 1997. Fuzzy Sets and Systems: Theory and Applications. Academic Press, Inc. Orlando, FL, USA.
10. He, L., Xu, H., Liu, X., He, W., Yuan, F., Hou, Z. and Gao, Y. 2010. Identification of Phenolic Compounds from Pomegranate (Punica granatum L.) Seed Residues and Investigation into Their Antioxidant Capacities by HPLC_ABTS+ Assay. Food Res. Int., 44(5): 1161–1167
11. Kim, K. J., Moskowitz, H. and Koksalan, M. 1996. Fuzzy Versus Statistical Linear Regression. Eur. J. Oper. Res., 92: 417–434.
12. Kotwal, G. J. 2007. Genetic Diversity-Independent Neutralization of Pandemic Viruses (e.g. HIV), Potentially Pandemic (e.g. H5N1 Strain of Influenza) and Carcinogenic (e.g. HBV and HCV) Viruses and Possible Agents of Bioterrorism (Variola) by Enveloped Virus Neutralizing Compounds (EVNCs). Vaccine, 26: 3055-3058.
13. Legua, P., Melgarejo, P., Abdelmajid, H., Martínez, J. J., Martínez-Font R., Ilham, H., Habida, H. and Hernández, Fca. 2012. Total Phenols and Antioxidant Capacity in 10 Moroccan Pomegranate Varieties. J. Food Sci., 71: 115-120.
14. Manera, F. J., Brotons, J. M., Conesa, A. and Porras, I. 2012b. Relationship between Air Temperature and Degreening of Lemon (Citrus lemon L. Burm. f.) Peel Colour during Maturation. Aust. J. Crop Sci., 6(6): 1051-1058.
15. Manera, F. J., Legua P., Melgarejo P., Brotons, J. M., Hernández, F. and Martínez, J. J. 2013. Determination of a Colour Index for Fruit of Pomegranate Varietal Group “Mollar de Elche”. Sci. Hortic., 150: 360–364
16. Manera, F. J., Legua P., Melgarejo P., Martínez R., Martínez J. J. and Hernández, F. 2012a. Effect of Air Temperature on Rind Colour Development in Pomegranates. Sci. Hortic., 134: 245-247.
17. Martínez, J. J., Hernández, F.., Abdelmajid, H., Legua, P., Martínez, R., El Amine, A. and Melgarejo, P. 2012. Physico-Chemical Characterization of Six Pomegranate Cultivars from Morocco: Processing and Fresh Market Aptitudes. Sci. Hortic., 140: 100-106.
18. Ozgen, M., Durgaç, C., Serçe, S. and Kaya, C. 2008. Chemical and Antioxidant Properties of Pomegranate Cultivars Grown in the Mediterranean Region of Turkey. Food Chem., 111: 703-706.
19. Reddy, M. K., Gupta, S. K., Jacob, M. R., Khan, S. I. and Ferreira, D. 2007. Antioxidant, Antimalarial and Antimicrobial Activities of Tannin-Rich Fractions, Ellagitannins and Phenolic Acids from Punica granatum L. Planta Med., 73: 461-467.
20. Ross, T. 2010. Fuzzy Logic, with Engineering Applications. John Wiley and Sons, United Kingdom.
21. Shwartz, E., Glazer, I., Bar-Ya’akov, I., Matiyahu, I. and Bar-Ilan, I. 2009. Changes in Chemical Constituents during the mMaturation and Ripening of Two Commercially Important Pomegranate Accessions. Food Chem., 115: 965-973.
22. Tanaka, H., Hayashi, I. and Watada, J. 1989. Possibilistic Linear Regression Analysis for Fuzzy Data. Eur. J. Oper. Res. 40: 389–396.
23. Tanaka, H. and Ishibuchi, H. 1991. Identification of Possibilistic Linear Systems by Quadratic Membership Functions of Fuzzy Parameters. Fuzzy Set. Syst., 41: 145– 160.
24. Tanaka, H., Uejima, S. and Asai, K. 1982. Linear Regression Analysis with Fuzzy Model. IEEE Syst.Trans. Syst. Man Cybernet, SMC-2: 903–907.
25. Zhao, X., Yuan, Z., Fang, Y., Yin, Y., Fena, L. 2014. Flavonols and Flavones Changes in Pomegranate (Punica granatum L.) Fruit Peel during Fruit Development. J. Agr. Sci. Tech., 16: 1649-1659.