Haplotype and Genetic Diversity of mtDNA in Indigenous Iranian Sheep and an Insight into the History of Sheep Domestication

Authors
1 Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Islamic Republic of Iran.
2 Centre for Reproduction and Genomics, AgResearch Invermay, Mosgiel, New Zealand.
3 Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
4 Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Kurdistan, Sanandaj, Islamic Republic of Iran.
Abstract
The archaeological evidence suggests that Iran has been one of the first origins of sheep domestication in the world. This study aims to investigate the genetic diversity of indigenous Iranian sheep breeds using mitochondrial DNA (mtDNA) and to explore the evolutionary history of sheep domestication in Iran. Single Nucleotide Polymorphism (SNP) markers in the control region of mtDNA were used to genotype the unrelated sheep samples of Zel and Lori-Bakhtiari breeds which were collected from or near the center of the sheep domestication, using the Sequenom MassARRAY platform. Phylogenetic analysis of the mitochondrial SNPs classified all animals into either of two haplogroups A and B. The population differentiation (FST) and gene flow (Nm) statistics were 0.054 and 4.715 respectively, indicating a low mitochondrial genetic differentiation and high gene flow between two sheep breeds. The Analysis of Variation (AMOVA) showed that around 97% of the total genetic diversity is distributed within the two breeds. Further analysis using SNP haplotyping identified nine different haplotypes within the animals; eight haplotypes were present in the Zel, while only four were seen in the Lori-Bakhtiari breed. Two haplotypes, designated H1 and H3, were present at higher frequencies in both breeds. Haplotyes H5, H6, H7, H8 and H9 were found as population-specific in the Zel, and haplotype H2 only occurred in Lori-Bakhtiari breed. The existence of two common Haplotypes (H1 and H3) in the animals suggest that the two Iranian breeds from strikingly different geographical regions, may share a common ancestry, and these haplotypes could be the origin haplotypes while the population specific haplotypes developed later.

Keywords


1. Agaviezor, B. O., Adefenwa, M. A., Peters, S. O., Yakubu, A., Adebambo, O. A., Ozoje, M. O., Ikeobi, C. O. N., Ilori, B. M., Wheto, M., Ajayi, O. O., Amusan, S. A., Okpeku, M., De Donato M. and Imumorin, I. G. 2012. Genetic Diversity Analysis of the Mitochondrial D-Loop of Nigerian Indigenous Sheep. Anim. Genet. Res., 50:13–20.
2. Agaviezor, B. O., Gunn, H. H., Amusan, S. A. and Imumorin, I. G. 2013. Gene Flow between Nigerian Sheep Breeds as Revealed by Microsatellite DNA Markers. J. Anim. Prod. Adv., 3(2):35-39.
3. Chen, S. Y., Duan, Z. Y., Sha, T., Xiangyu, J., Wu, S. F. and Zhang, Y. P. 2006. Origin, Genetic Diversity, and Population Structure of Chinese Domestic Sheep. Genet., 376:216–223.
4. Chessa, B., Pereira, F., Arnaud, F., Amorim, A., Goyache, F. and Mainland, I., Kao, R. R., Pemberton, J. M., Beraldi, D., Stear, M. J., Alberti, A., Pittau, M., Iannuzzi, L., Banabazi, M. H., Kazwala, R. R., Zhang, Y. P., Arranz, J. J., Ali, B. A., Wang, Z., Uzun, M., Dione, M. M., Olsaker, I., Holm, L. E., Saarma, U., Ahmad, S., Marzanov, N., Eythorsdottir, E., Holland, M. J., Ajmone-Marsan, P., Bruford, M. W., Kantanen, J., Spencer, T. E., Palmarini, M. 2009. Revealing the History of Sheep Domestication Using Retrovirus Integrations. Sci., 324(5926): 532-536.’
5. Cinkulov, M., Popovski, Z., Porcu, K., Tanaskovska, B., Hodžić, A. and Bytyqi, H., Mehmeti, H., Margeta, V., Djedović, R., Hoda, A., Trailović, R., Brka, M., Marković, B., Vazić, B., Vegara, M., Olsaker, I., Kantanen, J. 2008. Genetic Diversity and Structure of the West Balkan Pramenka Sheep Types as Revealed by Microsatellite and Mitochondrial DNA Analysis. J. Anim. Breed. Genet., 125:417–26.
6. Excoffier, L., Laval, G. and Schneider, S. 2005. Arlequin Ver. 3.0: An Integrated Software Package for Population Genetics Data Analysis. Evol. Bioinf. Online, 1:47–50.
7. Guo, J., Du, L. X., Ma, Y. H., Guan, W. J., Li, H. B., Zhao, Q. J., Li, X. and Rao, S. Q. 2005. A Novel Maternal Lineage Revealed in Sheep (Ovis aries). Anim. Genet., 36:331–6.
8. Hiendleder, S., Phua, S. H. and Hecht, W. 1999. A Diagnostic Assay Discriminating between Two Major Ovis aries Mitochondrial DNA Haplogroups. Anim. Genet., 30: 211-213.
9. Kijas, J. W., Townley, D., Dalrymple, B. P., Heaton, M. P., Maddox, J. F. and McGrath, A., Wilson, P., Ingersoll, R.G., McCulloch, R., McWilliam, S., Tang, D., McEwan, J., Cockett, N., Oddy, V.H., Nicholas, F.W., Raadsma, H., 2009. A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds. PLoS ONE., 4(3): e4668.
10. “Lancioni, E., Di Lorenzo, P., Ceccobelli, S., Perego, U. A., Miglio, A., Landi, V., Antognoni, M. T., Sarti, F. M., Lasagna, A. and Achilli, A. 2013. Phylogenetic Relationships of Three Italian Merino-derived Sheep Breeds Evaluated through a Complete Mitogenome Analysis. PLoS One., 8(9): e73712.
11. Mariotti, M., Valentini, A., Ajmone Marsan, P. and Pariset, L. 2013. Mitochondrial DNA of Seven Italian Sheep Breeds Shows Faint Signatures of Domestication and Suggests Recent Breed Formation. Mitochondrial DNA., 24(5): 577-583.
12. Meadows, J. R. S., Li, K., Kantanen, J., Tapio, M., Sipos, W. and Pardeshi, V. 2005. Mitochondrial Sequence Reveals High Levels of Gene Flow between Breeds of Domestic Sheep from Asia and Europe. Hered., 96: 494–501.
13. Mohammadhashemi, A., Pirani, N., Nassiri, M.R., Abbasidolati, T. and Baghban, B. 2012. Studying the Partially Sequenced mtDNA Hypervariable Region 1 (HVR1) of Iranian Moghani Sheep. Ann. Biol. Res., 3(6): 2906-2910.
14. Mokhtari, M. S., Miraei-Ashtiani, S. R., Jafaroghli, M. and Gutiérrez J. P. 2015. Studying Genetic Diversity in Moghani Sheep Using Pedigree Analysis. J. Agr. Sci. Tech., 17: 1151-1160
15. Moradi, M. H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K. G. and McEwan, J. C. 2012. Genomic Scan of Selective Sweeps in Thin and Fat Tail Sheep Breeds for Identifying of Candidate Regions Associated with Fat Deposition. BMC Genet., 13: 10.
16. Oeth, P., Beaulieu, M., Park, C., Kosman, D., Mistro, G. and van der Boom, D., Jurink, Ch. 2005. iPLEX_ Assay: Increased Plexing Efficiency and Flexibility for MassARRAY_system through Single Base Primer Extension with Mass-modified Terminators. [http://www.agrf.org.au/assets/files/PDF%20Documents/Sequenom%20iPlex.pdf]
17. Oner ,Y., Calvo, J. H. and Elmaci, C. 2013. Investigation of the Genetic Diversity among Native Turkish Sheep Breeds Using mtDNA Polymorphisms. Trop. Anim. Health Prod., 45(4): 947-51.
18. Pardeshi, V. C., Kadoo, N. Y., Sainani, M. N., Meadows, J. R. S., Kijas, J. W. and Gupta, V. S. 2007. Mitochondrial Haplotypes Reveal a Strong Genetic Structure for Three Indian Sheep Breeds. Anim. Genet., 38: 460–6.
19. Pariset, L., Perez, T., Mariotti, M., Bruford, M., Gargani, M., Joost, S., Ajmone Marsan, P., Negrini, R. and Valentini, A. 2011. Genetic Diversity of Sheep Breeds from Albania, Greece, and Italy Assessed by Mitochondrial DNA and Nuclear Polymorphisms (SNPs). Sci. World J., 11: 1641–1659.
20. Rozas, J. and Librado, P. 2009. A Software for Comprehensive Analysis of DNA Polymorphism Data. Bioinforma., 25:1451–1452.
21. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol., 28(10): 2731-2739.
22. Tapio, M., Marzanov, N., Ozerov, M., Cinkulov, M., Gonzarenko, G., Kiselyova, T., Murawski, M., Viinalass, H. and Kantanen, J. 2006. Sheep Mitochondrial DNA Variation in European, Caucasian, and Central Asian Areas. Mol. Biol. Evol., 23: 1776–83.
23. Upholt, W. B. and Dawid, I. B. 1977. Mapping of Mitochondrial DNA of Individual Sheep and Goats: Rapid Evolution in the D-Loop Region. Cell., 11:571-583.
24. Vatankhah, M. and Talebi, M.A. 2008. Heritability Estimates and Correlations between Production and Reproductive Traits in Lori-Bakhtiari Sheep in Iran. S. Afr. J. Anim. Sci., 38(2): 110–118.
25. Wang, X., Cao, L., Liu, Z. and Fang, S. 2006. Mitochondrial DNA Variation and Matrilineal Structure in Blue Sheep Populations of Helan Mountain, China. Can. J. Zool., 84: 1431-1439.
26. Wang, X., Ma, Y., Chen, H. and Guan, W. 2007. Genetic and Phylogenetic Studies of Chinese Native Sheep Breeds (Ovis aries) Based on mtDNA D-Loop Sequences. Small Rumin. Res., 72(2): 232–236.
27. Wood, N. J. and Phua, S. H. 1996. Variation in Control Region Sequence of the Sheep Mitochondrial Genome. Anim. Genet., 27:25-33.
28. Zeder, M. A. 1999. Animal Domestication in the Zagros: A Review of Past and Current Research. Pale´orient., 25:11–26.
29. Zhao, Y., Zhao, E., Zhang, N. and Duan, C. 2011. Mitochondrial DNA Diversity, Origin, and Phylogenic Relationships of Three Chinese Large-fat-tailed Sheep Breeds. Trop. Anim. Health Prod., 43(7): 1405-1410.