Assessment of Changes in Soil Erosion Risk Using RUSLE in Navrood Watershed, Iran

Authors
1 Department of Soil Science, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Islamic Republic of Iran.
2 Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Islamic Republic of Iran.
Abstract
Risk assessment of soil erosion, one of the most important land degradation problems worldwide, is very essential for land and water resources management, and development of soil conservation methods. In the present study, the temporal changes of soil erosion risk were assessed from 1987 to 2010, based on the Revised Universal Soil Loss Equation (RUSLE) using Remote Sensing (RS) and Geographic Information Systems (GIS) for the Navrood Watershed, Iran, with an area of 270 km2. Two Landsat satellite imageries obtained in 1987 and 2010 were used to assess the changes in vegetation cover during this period, and to obtain the Cover factor (C) of RUSLE. Rainfall and soil texture data and a digital elevation model were used to calculate the rest of RUSLE factors, which were taken as constant for the study period. The results showed that the average annual soil loss over the watershed ranged from 0 to 1,056 t ha-1 y-1(Cumulative percentage> 99.9%). The area mapped as very high erosion risk (> 100 t ha-1 y-1) increased from 10% in 1987 to 12% in 2010, and the area of the next risk class (51-100 t ha-1 y-1) increased from 8 to 9%. These changes cover an area of about 800 ha in the watershed, in which erosion risk has been doubled or tripled in the last 23 years. Forest clearing and rangeland overgrazing were identified as the most important reasons for the increase in erosion risk.

Keywords


1. Abu Hammad, A. 2011. Watershed Erosion Risk Assessment and Management Utilizing Revised Universal Soil Loss Equation-Geographic Information Systems in the Mediterranean Environments. Water Environ. J., 25(2): 149-162.
2. Alatorre, L. C., Beguería, S. and García-Ruiz, J. M. 2010. Regional Scale Modeling of Hillslope Sediment Delivery: A Case Study in the Barasona Reservoir Watershed (Spain) Using WATEM/SEDEM. J. Hydrol., 391(1): 109-123.
3. Angima, S. D., Stott, D. E., O’Neill, M.K., Ong, C. K. and Weesies, G. A. 2003. Soil Erosion Prediction Using RUSLE for Central Kenyan Highland Conditions. Agric. Ecosyst. Environ., 97: 295-308.
4. Angulo-Martínez, M. and Beguería, S. 2009. Estimating Rainfall Erosivity from Daily Precipitation Records: A Comparison among Methods Using Data from the Ebro Basin (NE Spain). J. Hydrol., 379: 111-121.
5. Arnouldus, H. M. J. 1980. An Approximation of the Rainfall Factor in the Universal Soil Loss Equation. In: "Assessment of Erossion", (Eds.): De Boodt, M. and Gabriels, D.. Chichester, New York, PP. 127-132.
6. Aydın, A. and Tecimen, H. B. 2010. Temporal Soil Erosion Evaluation: A CORINE Methodology Application at Elmalı Dam Watershed, Istanbul. Environ. Earth Sci., 61: 1457-1465.
7. Bezak, N., Rusjan, S., Petan, S., Sodnik, J. and Mikos, M. 2015. Estimation of Soil Loss by the WATEM/SEDEM Model Using an Automatic Parameter Estimation Procedure. Environ. Earth Sci., 74: 5245–5261.
8. Bhattarai, R. and Dutta, D. 2007. Estimation of Soil Erosion and Sediment Yield using GIS at Catchment Scale. Water Resour. Manage., 21: 1635-1647.
9. Brown, L. C. and Foster, G. R. 1987. Storm Erosivity Using Idealized Intensity Distributions. Trans. ASAE, 30: 379-386.
10. Bui, E. N., Hancock, G. J. and Wilkinson, S. N. 2011. Tolerable Hillslope Erosion Rates in Australia. Linking Science and Policy. Agric., Ecosyst. Environ., 144: 136-149.
11. Chakroun, H., Bonn, F. and Fortin, J. P. 1993. Combination of Single Storm Erosion and Hydrological Models into a Geographic Information System. In: "Farm Land Erosion: In Temperate Plains Environment and Hills", (Ed.): Wicherek, S.. Elsevier, Amsterdam, PP. 261-270.
12. Chen T., Niu, R.Q., Li, P. X., Zhang, L. P. and Du, B. 2011. Regional Soil Erosion Risk Mapping Using RUSLE, GIS, and Remote Sensing: A Case Study in Miyun Watershed, North China. Environ. Earth Sci., 63: 533–541.
13. De Jong, S. M., Paracchini, M. L., Bertolo, F., Folving, S., Megier, J. and De Roo, A. P. J. 1999. Regional Assessment of Soil Erosion Using the Distributed Model SEMMED and Remotely Sensed Data. Catena, 37(3/4): 291–308.
14. Emre-Tekeli, A., Akyurek, Z., Arda Sorman, A., Sensoy, A. and Unal-Sorman, A. 2005. Using MODIS Snow Cover Maps in Modeling Snowmelt Runoff Process in the Eastern Part of Turkey. Remote Sens. Environ., 97: 216- 230.
15. Fournier, F. 1960. Climat et Erosion. Presses Universitaires de France, Paris.
16. Fu, B. J., Zhao, W. W., Chen, L. D., Zhang, Q. J., Lü, Y. H., Gulinck, H. and Poesen, J. 2005. Assessment of Soil Erosion at Large Watershed Scale Using RUSLE and GIS: A Case study in the Loess Plateau of China. Land Degrad. Dev., 16(1): 73-85.
17. Gee, G. W. and Or, D. 2002. Particle-Size Analysis. Part 4. In: "Methods of Soil Analysis", (Eds.): Dane, J. H. and Topp, C. SSSA, Madison, WI, PP. 255-289.
18. Gobin, A., Jones, R., Kirkby, M., Campling, P., Govers, G., Kosmas, C. and Gentile, A. 2004. Indicators for Pan-European Assessment and Monitoring of Soil Erosion by Water. Environ. Sci. Policy, 7: 25-38.
19. Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J. and Moeyersons, J. 2013. Assesing the Preformance of Aspatially Distributed Soil Erosion and Sediment Delivery Model (WATEM/SEDEM) in Northern Ethiopia. Land Degrad. Dev., 24: 188–204.
20. Hazelton, P. A. 1992. Soil Landscapes of the Kiama 1:100,000 sheet. Department of Conservation and Land Management (Incorporating the Soil Conservation Service of NSW), Sydney.
21. Honarmand, M., Asadi, H., Vazifedoost, M. and Moussavi, A. 2011. Rainfal Erosivity Index in Guilan Province. Proceeding of the 12th Iranian Soil Science Congress, 12-15 July 2011, Tabriz University, Tabriz, Iran.
22. Jain, S. K. and Goel, M. K. 2002. Assessing the Vulnerability to Soil Erosion of the Ukai Dam Catchments Using Remote Sensing and GIS. Hydrol. Sci. J., 47(1): 31-40.
23. Karydas, Ch. G., Sekuloska, T. and Silleos, G.N. 2009. Quantification and Site-Pecification of the Support Practice Factor When Mapping Soil Erosion Risk Associated with Olive Plantations in the Mediterranean Island of Crete. Environ. Monit. Assess., 149(1-4): 19–28.
24. Khalili, A. 2005. The Climate of Iran. In: “The Soils of Iran, new achievements in perception, management and use”, (Eds.): Banaei, M. H., Moameni, A., Bybordi, M. and Malakouti, M. JIranian Soil and Water Research Institute, Sana Publication, Iran, 1(3): 24-71.
25. Lal, R. 1998. Soil Erosion Impact on Agronomic Productivity and Environment Quality: Critical Reviews. Plant Sci., 17: 319-464.
26. McCool, D. K., Brown, L. C., Foster, G. R., Mutchler, C. K. and Meyer, L. D. 1987. Revised Slope Steepness Factor for the Universal Soil Loss Equation. Trans. ASAE, 30: 1387-1396.
27. Millward, A. A. and Mersey, J. E. 1999. Adapting the RUSLE to Model Soil Erosion Potential in a Mountainous Tropical Watershed. Catena, 38: 109-129.
28. Moore, I. D. and Burch, G. J. 1986. Physical Basis of the Length-slope Factor in the Universal Soil Loss Equation. Soil Sci. Soc. Am. J., 50: 1294-1298.
29. Moore, I. D. and Wilson, J. P. 1992. Length-slope Factors for the Revised Universal Soil Loss Equation: Simplified Method of Estimation. J. Soil Water Conserv., 47: 423-428.
30. Morgan, R. P. C. 2005. Soil Erosion and Conservation. Third Edition, Blackwell Publishing Ltd, Oxford, UK, 304 PP.
31. Mutekanga, F. P., Visser, S. M. and Stroosnijder, L. 2010. A Tool for Rapid Assessment of Erosion Risk to Support Decision-making and Policy Development at the Ngenge Watershed in Uganda. Geoderma, 160(2): 165–174.
32. Oldeman, L. R. 1994. The Global Extent of Soil Degradation. In: "Soil Resilience and Sustainable Landuse", (Eds.): Greenland, D. J. and Saboles, T. Commonwealth Agricultural Bureau International, Wallingford, UK.
33. Ozsahin, E. and Uygur, V. 2014. The Effects of Land Use and Land Cover Changes (LULCC) in Kuseyr Plateau of Turkey on Erosion. Turk. J. Agric. For., 38: 478-487.
34. Prasuhna, V., Liniger, H., Gisler, S., Herweg, K., Candinas, A. and Clément, J.P. 2013. A High-resolution Soil Erosion Risk Map of Switzerland as Strategic Policy Support System. Land Use Policy, 32: 281-291.
35. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K. and Yoder, D. C. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook No. 703, USDA, Washington, DC, USA. 404 PP.
36. Prasannakumar, V., Vijith, H., Abinod, S. and Geetha, N. 2012. Estimation of Soil Erosion Risk within a Small Mountainous Sub-watershed in Kerala, India, Using Revised Universal Soil Loss Equation (RUSLE) and Geo-information Technology. Geosci. Front., 3(2): 209-215.
37. Romkens, M. J. M., Prased, S. N. and Poesen, J. W. A. 1986. Soil Erodibility and Properties. Proceeding 13th Congress of the Intern. Soc. of Soil, Homburg, Germany, 5: 492-504.
38. Sadeghi, S. H. R., Moatamednia, M. and Behzadfar, M., 2011. Spatial and Temporal Variations in the Rainfall Erosivity Factor in Iran. J. Agr. Sci. Tech., 13: 451-464.
39. Sepaskhah, A. R. and Sarkhosh, P. 2004. Estimating Storm Erosion Index in Southern Region of Islamic Republic of Iran. Iran. J. Sci. Tech., Trans. B Eng., 29(B3).
40. Sheng, M., Fang, H. and Guo, M. 2015. Modeling Soil Erosion and Sediment Yield Using WaTEM/SEDEM Model for the Black Soil Region of Northeast China. Resou. Sci., 37(4): 815-822.
41. Shi, Z. H., Ai, L., Fang, N. F. and Zhu, H. D. 2012. Modeling the Impacts of Integrated Small Watershed Management on Soil Erosion and Sediment Delivery: A Case Study in the Three Gorges Area, China. J. Hydrol., 438: 156-167.
42. Shi, Z. H., Cai, C. F., Ding, S. W., Li, Z. X., Wang, T. W. and Sun, Z. C. 2002. Assessment of Erosion Risk with the Rusle and Gis in the Middle and Lower Reaches of Hanjiang River. 12th ISCO Conference, May 26-31, 2002, Beijing, China.
43. Shi, Z. H., Cai, C. F., Ding, S. W., Wang, T. W. and Chow, T. L. 2004. Soil Conservation Planning at the Small Watershed Level Using RUSLE with GIS: a Case Study in the Three Gorge Area of China. Catena, 55(1): 33-48.
44. Symeonakis, E. and Drake, N. 2004. Monitoring Desertification and Land Degradation over Sub-Saharan Africa. Int. J. Remote Sens., 25(3): 573-592.
45. Tetzlaff, B., Friedrich, K., Vorderbrügge, T., Vereecken, H. and Wendland, F. 2013. Distributed Modelling of Mean Annual Soil Erosion and Sediment Delivery Rates to Surface Waters. Catena, 102: 13-20.
46. Vafakhah, M. and Mohseni Saravi, M., 2011. Optimizing Management of Soil Erosion in Orazan Sub-basin Iran. J. Agr. Sci. Tech., 13: 717-726.
47. Van der Knijff, M., Jones R. J. A. and Montanarella, L. 1999. Soil Erosion Risk in Italy: EUR19022 EN. Office for Official Publications of the European Communities, Luxembourg, 54 PP.
48. Van der Knijff, M., Jones R. J. A. and Montanarella, L. 2000. Soil Erosion Risk Assessment in Europe: EUR 19044 EN. Office for Official Publications of the European Communities, Luxembourg, 34 PP.
49. Van Rompaey, A., Bazzoffi, P., Jones, R. J. A. and Montanarella, L. 2005. Modelling Sediment Budgets in Italian Catchments. Geomorphol., 65: 157–169.
50. Van Rompaey, A., Govers, G. and Puttemans, C. 2002. Modelling Land Use Changes and Their Impact on Soil Erosion and Sediment Supply to Rivers. Earth Surf. Proc. Land., 27: 481–494.
51. Van Rompaey, A., Krasa, J., Dostal, T. and Govers, G. 2003. Modelling Sediment Supply to Rivers and Reservoirs in Eastern Europe during and after the Collectivization Period. Hydrobiologia, 494: 169–176.
52. Van Rompaey, A., Verstraeten, G., Van Oost, K., Govers, G. and Poesen, J. 2001. Modelling Mean Annual Sediment Yield Using a Distributed Approach. Earth Surf. Proc. Land., 26: 1221–1236.
53. Verstraeten, G., Prosser, I. P. and Fogarty, P. 2007. Predicting the Spatial Patterns of Hillslope Sediment Delivery to River Channels in the Murrumbidgee Catchment. Australia J. Hydrol., 334: 440–454.
54. Vrieling, A., de Jong, S. M., Sterk, G. and Rodrigues, S. C. 2008. Timing of Erosion and Satellite Data: A Multi-resolution Approach to Soil Erosion Risk Mapping. Int. J. Appl. Earth Observ. Geoinfo., 10: 267-281.
55. Vrieling, A., Sterk, G. and Beaulieu, N. 2002. Erosion Risk Mapping: A Methodological Case Study in the Colombian Eastern Plains. J. Soil Water Conserv., 57(3): 158-163.
56. Whishmeier, W. H. and Smith, D. D. 1978. Predicting Rainfall Erosion Losses: A Guide to Soil Conservation Planning. Handbook No. 537. US Department of Agriculture U.S. Department of Agriculture, Washington, D.C.
57. Zhang, X., Wu, B., Ling, F., Zeng, Y., Yan, N. and Yuan, Ch. 2010. Identification of Priority Areas for Controlling Soil Erosion. Catena, 83(1): 76–86.
58. Zhang, Y., Degroote, J., Wolter, C. and Sugumaran, R. 2009. Integration of Modified Universal Soil Loss Equation (MUSLE) into a GIS Framework to Assess Soil Erosion Risk. Land Degrad. Dev., 20: 84-91.