Identification of QTLs Associated with Agronomic and Physiological Traits under Salinity Stress in Barley

Authors
1 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Islamic Republic of Iran.
2 Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
3 Center of Excellence in Cereal Molecular Breeding, University of Tabriz, Tabriz, Islamic Republic of Iran.
4 Dryland Agricultural Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Maragheh, Iran.
Abstract
Salinity tolerance is a genetically and physiologically complex trait, controlled by Quantitative Trait Loci (QTLs). In order to map the QTLs associated with agronomic and physiological traits, 149 doubled haploid lines derived from a cross between Clipper (salt susceptible) and Sahara 3771 (salt tolerant) barley genotypes were evaluated under natural saline-stress and non-stress conditions using 14 traits. QTL analysis was performed based on the composite interval mapping method, using the genetic linkage map consisting of 517 molecular markers which spanned a total of 1502.4 cM. A total of 78 QTLs for days to heading, relative water content, chlorophyll content, plant height, spike length, days to maturity, biomass, grain yield, harvest index, grain number per spike, 1,000-kernel weight, Na+, K+ concentrations and K+/Na+ ratio, were determined, with 40 and 38 QTLs under normal and salinity environments, respectively. Most of the detected QTLs were located on chromosome 2H. The phenotypic variation explained by individual QTLs ranged from 3.3 to 68.6%. A major QTL was identified at both saline-stress and non-stress conditions in the vicinity of Vrs1 on chromosome 2H, related to biomass, grain number per spike, 1,000 kernel weight, plant height and grain yield. This QTL may be useful in the barley breeding programs for improving salt tolerance by marker-assisted selection. Furthermore, some stable QTLs, were identified for days to heading, biomass, spike length, grain number per spike, 1,000 kernel weight, and K+ content which can be regarded as promising QTLs for breeding purposes.

Keywords


1. Abid, M. A., Qayyum, A., Dasti, A. and Abdilwajid, R. 2001. Effect of Salinity and SAR of Irrigation Water on Yield, Physiological Growth Parameters of Maize and Properties of the Soil. J. Res. Sci., 12: 26-33.
2. Aminfar, Z., Dadmehr, M., Korouzhdehi, B., Siahsar, B. and Heidari, M. 2011. Determination of Chromosomes that Control Physiological Traits Associated with Salt Tolerance in Barley at the Seedling Stage. Afr. J. Biotechnol., 10: 8794-8799.
3. Beecher, B., Smidansky, D., See, D., Blake, T. K. and Giroux, M. 2001. Mapping and Sequence Analysis of Barley Hordoindolines. Theor. Appl. Genet., 102: 833-840.
4. Colmer, T. D., Munns, R. and Flowers, T. J. 2005. Improving Salt-Tolerance of Wheat and Barley: Future Prospects. Aust. J. Exp. Agric., 45: 1425-1443.
5. Dudly, J. W. 1993. Molecular Markers in Plant Improvement: Manipulation of Genes Affecting Quantitative Traits. Crop Sci., 33: 660-668.
6. Ebadi-Segherloo, A. 2013. Construction of Barley Doubled Haploid Population Microsatellite Linkage Map and Identification of Genetic Regions Associated with Agronomic Traits and Some Micronutrients Accumulation. Ph. D. Thesis, Faculty of Agriculture, University of Tabriz,Tabriz, Iran. (in Persian with English Abstract).
7. EL-Hendawy, S. E., Ruan, Y., Hu, Y. and Schmidhalter, U. 2009. A Comparison of Screening Criteria for Salt Tolerance in Wheat under Field and Controlled Environmental Conditions. J. Agron. Crop Sci., 195: 356-367.
8. FAO. 2016. FAO Soils Portal. Retrieved from: http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/ in April, 2016.
9. Forster, B. P., Ellis, R. P., Thomas, W. T. B., Newton, A. C., Tuberosa, R., This, D., El-Enein, R. A., Bahri, M. H. and Ben Salem, M. 2000. The Development and Application of Molecular Markers for Abiotic Stress Tolerance in Barley. J. Exp. Bot., 51: 19-27.
10. Haung, J. and Redman, R. E. 1995. Responses of Growth, Morphology and Anatomy to Salinity and Calcium Supply in Cultivated and Wild Barley. Can. J. Bot., 73: 1859-1866.
11. Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., Lundaqvist, U., Fujimura, T., Matsuoka, M., Matsumoto, T. and Yano, M. 2007. Six Rowed Barley Originated from a Mutation in a Homeodomain-lucine Zipper I-class Homeobox Gene. Proc. Natl. Acad. Sci. USA, 104: 1424-1429.
12. Li, J. Z., Haung, X. Q., Heinrichs, F. and Ganal, M. W. 2005. Analysis of QTLs for Yield, Yield Components and Malting Quality in a BC3-DH Population of Spring Barley. Theor. Appl. Genet., 110: 356-363.
13. Lin, Y. R., Schertz, F. and Paterson, A. 1995. Comparative Aanalysis of QTLs Affecting Plant Height and Maturity across the Poaceae, in Reference to an Interspecific Sorghum Population. Gene., 141: 391-411.
14. Marquez-Cedillo, L. A., Hayes, P. M., Kleinhof, A., Legge, W. G., Rossangel, B. G., Sato, K., Ullrich, S. E. and Wesenberg, D. M. 2001. QTL Analysis of Agronomic Traits in Barley Based on the Doubled Haploid Progeny of Two Elite North American Varieties Representing Different Germplasm Groups. Theor. Appl. Genet., 103: 625-637.
15. Mass, E. V. and Hoffman, G. J. 1977. Crop Salt Tolerance-current Assessment. J. Irri. Drain. Div. ASCE, 103: 115-134.
16. Mer, P. K., Prajith, P. K., Pandya, D. H. and Pandey, A. N. 2000. Effect of Salts on Germination of Seeds and Growth of Young Plants of Hordeum vulgare, Triticum aestivum, Cicer arietinum and Brassica juncea. J. Agron. Crop Sci., 185: 209-217.
17. Mohammadi, M., Taleei, A., Zeinali, H., Naghavi, M. R., Ceccarelli, S., Grando, S. and Baum, M. 2005. QTL Analysis for Phonologic Traits in Doubled Haploid Population of Barley. Int. J. Agri. Biol., 7: 820-823.
18. Munns, R. and James, R. A. 2003. Screening Methods for Salinity Tolerance, a Case Study with Tetraploid Wheat. Plant Soil, 253: 201-218.
19. Munns, R. and Tester, M. 2008. Mechanisms of Salinity Tolerance. Annu. Rev. PlantBiol., l59: 651-681.
20. Nguyen, V. L., Ribot, S. A., Dolstra, O., Niks, R. E., Visser, R. G. F. and van der Lindeh, C. G. 2013. Identification of Quantitative Trait Loci for Ion Homeostasis and Salt Tolerance in Barley (Hordeum vulgare L.). Mol. Breed., 31: 137-152.
21. Paterson, A. H., Damon, S., Hewitt, J. D., Zamir, D., Rabinowitch, H. O., Linclon, S. E., Lander, E. S. and Tanksley, S. D. 1991. Mendelian Factors Underlying Quantitative Traits in Tomato: Comparison across Species, Generations and Environment. Gene., 127: 181-197.
22. Peighambari, S. A., YazdiSamadi, B., Nabipour, A. R., Charmet, G. and Sarrafi, A. 2005. QTL Analysis for Agronomic Traits in a Barley Doubled Haploids Population Growth in Iran. Plant Sci., 169: 1008-1013.
23. Ren, X., Sun, D., Sun, G., Li, C. and Dong, W. 2013. Molecular Detection of QTL for Agronomic and Quality Traits in a Doubled Haploid Barley Oopulation. Aust. J. Crop Sci., 6: 878-886.
24. Rivandi, J., Miyazaki, J., Hrmova, M., Pallotta, M., Tester, M. and Collins, N. C. 2011. A SOS3 Homologue Maps to HvNax4, a Barley Locus Controlling an Environmentally Sensitive Na+ Exclusion Trait. J. Exp. Bot., 62: 1201–1216.
25. Sbei, H., Hammami, Z., Trifa,Y., Hamza, S. and Harrabi, M. 2012. Phenotypic Diversity Analysis for Salinity Tolerance of Tunisian Barley Populations (Hordeum vulgare L.). J. Arid Land Stud., 22: 57–60.
26. Sbei, H., Sato, K., Shehzad, T., Harrabi, M. and Okuno, K. 2014. Detection of QTLs for Salt Tolerance in Asian Barley (Hordeum vulagre L.) Association Analysis with SNP Markers. Breed. Sci., 64: 378-388.
27. Shahinnia, F., Rezai, A., Sayed-Tabatabaei, B. E., Komatsuda, T. and Mohammadi, S. A. 2006. QTL Mapping of Heading Date and Plant Height in Barley Cross “Azmamugi×KantoNakate Gold”. Iran .J. Biotech., 4: 88-94.
28. Shavrukov, Y., Gupta, N. K., Miyazaki, J., Baho, M. N., Chalmers, K. J., Tester, M., Langridge, P. and Collins, N. C. 2010. HvNax3a Locus Controlling Shoot Ssodium Exclusion Derived from Wild Barley (Hordeum vulgare ssp. spontaneum). Funct. Integr. Genom., 10: 277–291.
29. Siahsar, B. A. and Naroui, M. 2010. Mapping QTLs of Physiological Traits Associated with Salt Tolerance in Steptoe×Morex Doubled Haploid Lines of Barley at Seedling Stage. J. Food. Agric. Environ., 8: 751-759.
30. Turuspekov, Y., Martin, J. M., Bowman, J. G. P., Beecher, B. S. and Giroux, M. J. 2008. Association between Vrs1 Alleles and Grain Quality Traits in Spring Barley (Hordeumvulgare L.) .Cereal Chem., 6: 817-823.
31. Voorrips, R. E. 2002. MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. J. Hered., 93: 77-78.
32. Wang, S., Basten, C. J. and Zeng, Z. B. 2007. Windows QTL Cartographer V2.5. Department of Statistics, North Carolina State University, Raleigh, NC. Available at: http://statgen.ncsu.edu/qtlcart/wQTLcart.htm.
33. Xue, D., Haung, Y., Zhang, X., Wei, K., Westcott, S., Li, C., Chen, M., Zhang, G. and Lance, R. 2009. Identification of QTLs Associated with Salinity Tolerance at Late Growth Stage in Barley. Euphytica, 169: 187-196.
34. Zhou, H., Briecero, G., Dovel, R., Hayes, P. M., Liu, B. H. and Ulrich, S. E. 1999. Molecular Breeding for Grain Yield in Barley: An Evaluation of QTL Effects in a Spring Barley. Theor. Appl. Genet., 98: 772-779.
35. Zhou, G., Johnson, P., Ryan, P. R., Delhaize, E. and Zhou, M. 2012. Quantitative Trait Loci for Salinity Tolerance in Barley (Hordeum vulgare L.). Mol. Breed., 29: 427-436.