Salinity Tolerance of Kentucky Bluegrass as Affected by Nitrogen Fertilization

Authors
1 Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, P. O. BOX: 313-45195, Islamic Republic of Iran.
2 Department of Ornamental Plants, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Islamic Republic of Iran.
Abstract
In most semiarid and arid areas, fresh water shortage compels managers to use low quality water sources with high salinity to irrigate turf and landscape. Recent research has noticed that management of nitrogen fertilization can alleviate salinity effects on plants. This greenhouse sand culture experiment was conducted in order to investigate morphological and physiological responses to salinity stress in Kentucky bluegrass (Poa pratensis L.) grown using different nitrogen sources. Three salinity levels (0, 40 and 80 mM NaCl) and three NO3-/NH4+ ratios (6/0.5, 6/1 and 6/2) were applied in nutrient solutions. Under non saline conditions, higher ammonium concentration increased Turf Quality (TQ), leaf NO3-, proline content, Nitrate Reductase Activity (NRA), shoot and root growth. On the other hand, leaf potassium (K+) sodium (Na+) and MalonDiAldehyde (MDA) content were not affected. During the first week, the 40 mM NaCl treatment showed that the positive effects of NH4+ on salinity tolerance were still perceptible. However, the 80 mM NaCl treatment showed that the adverse effects of high salinities were more pronounced when turf received high ammonium rate nutrient solution, as manifested by the decrease of TQ, NO3-, NRA, K+/Na+ ratio, shoot and root growth and by the increase of leaf MDA content. This suggests that effects of NO3-/NH4+ ratio on salt tolerance varies with salinity levels.

Keywords


1. Abd-ElBaki, G. K., Siefritz, F., Man, H. M.,Weiner, H., Haldenhoff, R. and Kaiser, W. M. 2000. Nitrate Reductase in Zea mays L. Under Salinity. Plant Cell Environ. 23: 515-521.
2. Ahmad, P., Azooz, M. M. and Prasad, M. N. V. 2013. Ecophysiology and Responses of Plants under Salt Stress. Springer, New York, 512 PP.
3. Ali, A., Tucker, T. C., Thompson, T. L. and Salim, M. 2001. Effects of Salinity and Mixed Ammonium and Nitrate Nutrition on the Growth and Nitrogen Utilization of Barley. J. Agron. Crop Sci., 186: 223-228.
4. Ashraf, M. and Sultana, R. 2000. Combination Effect of NaCl Salinity and N-Form on Mineral Composition of Sunflower Plants. Biol. Plant., 43: 615-619
5. Bates, L. S., Waldren, R. P. and Teare, I. D. 1973. Rapid Determination of Free Proline for Water Stress Studies. Plant Soil, 39: 205-207.
6. Beltrao, J., Ben Asher, J. and Magnusson, D. 1993. Sweet Corn Response to Combined Effect of Saline Water and Nitrogen Fertilization. Acta Hort., 335: 53-58.
7. Beltrao, J., Jesus, S. B., Trindade, D.,Miguel, M. G., Neves, M. A., Panagopoulos, T. and Ben Asher, J. 2002. Combined Effects of Salts and Nitrogen on the Yield Function of Lettuce. Acta Hort., 573: 363-368.
8. Beltrao, J., Correia, P., Costa, M. S., Gamito, P., Santos, R. and Seita, J. 2014. The Influence of Nutrients on Turfgrass Response to Treated Wastewater Application, under Several Saline Conditions and Irrigation Regimes. Environ. Process.,1: 105-113.
9. Bybordi, A. 2010. Influence of NO3:NH4 Ratios and Silicon on Growth, Nitrate Reductase Activity and Fatty Acid Composition of Canola under Saline Conditions. African. J. Agric. Res., 5: 1984-1992.
10. Chapman, H. D. and Pratt, P. F. 1982. Methods of Plant Analysis. I. Methods of Analysis for Soils, Plants and Water. Chapman Publishers, Riverside, California, USA, 170 PP.
11. Coïc, Y., and Lesaint, C. 1975. La Nutrition Minérale Et En Eau Des Plantes En Horticulture Avancée. Le Document Technique de la SCPA, 23:1-22.
12. Cramer, G. R., Lauchli, A. and Polito, V. S. 1985. Displacement of Ca2+ By Na+ From the Plasmalemma of Root Cells. A Primary Response To Salt Stress?. Plant Physiol., 79: 207- 277.
13. Cramer, M. D., Schierholt, A., Wang, Y. Z. and Lips, S. H. 1995. The Influence of Salinity on the Utilization of Root Anaplerotic Carbon and Nitrogen Metabolism in Tomato Seedlings. J. Exp. Bot, 46: 1569-1577.
14. Debouba, M., Maaroufi-Dghimi, H., Suzuki, A., Ghorbel, M. H. and Gouia, I. H. 2007. Changes in Growth and Activity of Enzymes Involved In Nitrate Reduction and Ammonium Assimilation in Tomato Seedlings in Response to NaCl Stress. Ann. Bot., 99:1143-1151.
15. Dhindsa, R. S., Plumb-Dhindsa, P. and Thorpe, T. A. 1981. Leaf Senescence: Correlated With Increased Leaves of Membrane Permeability and Lipid Peroxidation and Decreased Levels of Superoxide Dismutase and Catalase. J. Exp. Bot., 32: 93-101.
16. Ferrari, T. E. and Varner, J. E. 1970. Control of Nitrate Reductase Activity in Barley Aleurone Layers. Proc. Nat. Acad. Sci. USA, 65: 729-736.
17. Flores, P., Navarro, J. M., Carvajal, M., Cerda, A. and Martinez, V. 2003. Tomato Yield and Quality as Affected by Nitrogen Source and Salinity. Agronomie, 23: 249-256.
18. Ghanem, M. E., Martinez-Andujar, C., Albacete, A., Pospisilova, H., Dodd, I.C., Perez-Alfocea, F. and Lutts, S. 2011. Nitrogen Form Alters Hormonal Balance in Salt-treated Tomato (Solanum lycopersicum L.). J. Plant Growth Regul., 30: 144-157.
19. Gill, G. and Rainville, D.1994. Effluent for Irrigation: Wave of the Future?. In: United States Golf Assoc (Ed.). “Wastewater Reuse for Golf Course Irrigation”. Lewis Publishers, Chelsea, M. I., pp 44-52.
20. Heath, R. L. and Parker, L. 1968. Photoperoxidation in Isolated Chloroplasts: I. Kinetics and Stiochiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys., 125:189-198.
21. Kant, S., Kant, P., Lips, H. and Barak, S. 2007. Partial Substitution of NO3− by NH4+ Fertilization Increases Ammonium Assimilating Enzyme Activities and Reduces the Deleterious Effects of Salinity on the Growth of Barley. J. Plant Physiol., 164: 303-311.
22. Khaydarova, V. and Beltrão, J. 2006. Response of Lettuce Yield to the Combined Effects of Salts, Nitrogen and Water. WSEAS Trans. Environ. Dev., 2: 512-518.
23. Koch, M. J., Huang, B. R. and Bonos, S. A. 2011. Salinity Tolerance of Kentucky Bluegrass Cultivars and Selections using an Overhead Irrigated Screening Technique. Crop Sci., 51: 2846-2857.
24. Lewis, O. A. M., Leidi, E. O. and Lips, S. H. 1989. Effect of Nitrogen Source on Growth Response to Salinity Stress in Maize and Wheat. New Phytol., 111: 155-160.
25. Lorenzo, H., Sivero, J. M. and Caballero, M. 2001. Salinity and Nitrogen Fertilization and Nitrogen Metabolism in Rose Plants. J. Agr. Sci. Camb., 137: 77-84.
26. Lu, S., Peng, X., Guo, Z., Zhang, G., Fan, Z., Pang, C., Wang, C. and Wang, J. 2007. In vitro Selection of Salinity Tolerant Variants From Triploid Bermudagrass (Cynodon Transvaalensis × C. Dactylon) and their Physiological Responses to Salt and Drought Stress. Plant Cell Rep., 26:1413-1420.
27. Mane, A. V., Deshpande, T. V., Wagh, V. B., Karadge, B. A. and Samant, J. S. 2011. A Critical Review on Physiological Changes Associated with Reference to Salinity. Int. J. Environ. Sci., 6: 1192-1216.
28. Marschner, H. 1995. Mineral Nutrition of Higher Plants. Academic Press, London, 889 PP.
29. Martínez, V., Nunez, J. M., Ortiz, A. and Cerda, A. 1994. Changes in Amino-Acid and Organic-Acid Composition in Tomato and Cucumber Plants in Relation to Salinity and Nitrogen Nutrition. J. Plant Nutr., 17: 1359-1368.
30. Min, W., Hou, Z., Ma, L., Zhang, W., Ru, S. and Ye, J. 2014. Effects of water salinity and N application rate on water-and N-use efficiency of cotton under drip irrigation. J. Arid land, 6: 454-467.
31. Misra, N. and Gupta, A. K. 2006. Effect of Salinity and Different Nitrogen Sources on the Activity of Antioxidant Enzymes and Indole Alkaloid Content in Catharanthuse roseus Seedling. J. Plant Physiol., 163: 11-18.
32. Mitteler, R. 2002. Oxidative Stress, Antioxidants and Stress Tolerance. Trend. Plant Sci. 7: 405-410.
33. Nasraoui-Hajaji, A. and Gouia, H. 2014. Photosynthesis Sensitivity to NH4-N Change with Nitrogen Fertilizer Type. Plant Soil Environ., 6: 274-279.
34. Nathawat, N. S., Kuhad, M. S., Goswami, C. L., Patel, A. L. and Kumar, R. 2007. Interactive Effects of Nitrogen and Salinity Indices and Ion Content of Indian Mustard. J. Plant Nutr., 30: 569-598.
35. Neves, M. A., Miguel, M. G., Marques, C., Panagopoulos, T. and Beltrão, J. 2006. Response of Tetragonia tetragonioides (Pallas) Kuntze to the Combined Effects of Salts and Nitrogen. WSEAS Trans. Environ. Dev., 2: 470-474.
36. Pessarakli, M. 2010. Handbook of Plant and Crop Stress. 3rd Edition, Revised and Expanded, CRC Press, Taylor and Francis Publishing Company, Florida, 1215 PP.
37. Polesskaya, O. G., Kashirina, E. K. and Alekhina, N. D. 2004. Changes in the Activity of Antioxidant Enzymes in Wheat Leaves and Roots as a Function of Nitrogen Source and Supply. Russ. J. Plant Physiol., 51: 615-620.
38. Prinsi, B. and Espen, L. 2015. Mineral Nitrogen Sources Differently Affect Root Glutamine Synthetase Isoforms and Amino Acid Balance among Organs in Maize. BMC Plant Biol., 15: 96.
39. Qian, Y. L., Engelke, M. C. and Foster, M. J. V. 2000. Salinity Effects on Zoysigrass Cultivars and Experimental Lines. Crop Sci., 40: 488-492.
40. SAS Institute. 2001. SAS System for Windows, Version 8e. SAS Inst., Cary, NC.
41. Smirnoff, N. 1995. Antioxidant Systems and Plant Response to the Environment. In: “Environment and Plant Metabolism: Flexibility and Acclimation”, (Ed.): Smirnoff, N. Bios Scientific Publishers, Oxford, PP. 217-243.
42. Treguer, P. and Le Corre, P. 1975. Manuel D'analyse Des Sels Nutritifs Dans L'eau De Mer. Universite de Bretagne Occidentale, Brest, PP. 11-22.
43. Turgeon, A. J. 2002. Turfgrass Management. 6th Edition, Prentice Hall, Upper Saddle Brook, NJ, 400 PP.
44. Uddin, M. K., Juraimi, A. S., Ismail, M. R., Hossain, M. A., Othman, R. and Abdul Rahim, A. 2012. Physiological and Growth Responses of Six Turfgrass Species Relative to Salinity Tolerance. Sci. World J., 10: 1-10.
45. Vazquez, C., Reed, S. T. and Dunn, C. 2015. Nitrogen Fertilization as Ammonium or Nitrate-N on Hippeastrum hybridum Bulb Growth. Agric. Sci., 6: 1547-1554.