Gut Proteolytic Profile of Larval Callosobruchus maculatus (Coleoptera: Chrysomelidae) in Response to Feeding on Different Fabaceous Host Plants

Authors
1 Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Islamic Republic of Iran.
2 Department of Basic Sciences (Biochemistry), Faculty of Veterinary, Urmia University, Urmia, Islamic Republic of Iran.
Abstract
The impact of three different fabaceous host plants including cowpea (Vigna unguiculata), chickpea (Cicer arietinum), and mung bean (Vigna radiata) seeds was investigated using biochemical approaches on possible changes of gut proteolytic activity of the cowpea weevil, Callosobruchus maculatus at 30±1˚C and 70±5% RH and a photoperiod of 8:16 (L:D). Results revealed that pH of 4-5 and 9 was optimal for the activity of larval gut proteases using azocasein and hemoglobin as general substrates. Different serine (BApNA, SAAPFpNA, PMSF, TLCK, and TPCK) and cysteine (Z-Arg-Arg- pNA, Z-Phe-Arg-pNA and DTT) specific substrates inhibitors and activator were used as a further proof of the proteolytic profile in the gut of C. maculates. Although combinations of serine and cysteine proteases were observed, the cysteine proteases had the highest rate on the studied hosts. The protease activity, especially cystein protease, was the highest on cowpea, which was supported by hemoglobin (0.156±0.045 U mg-1), Z-Phe-Arg-pNA (2.85 U mg-1) substrates and DTT (90.00±0.10%) as an activator. Due to the importance and frequency of cysteine proteinases and their effects on biological and physiological process, it would be better to design pest management programs based on cysteine plant proteinase inhibitors as transgenic plants.

Keywords


1. Azzouz, H., Cherqui, A., Campan, E. D. M., Rahbe, Duport, Y., Jouanin, G., Kaiser, L. and Giordanengo, P. 2005. Effects of Plant Protease Inhibitors Oyzacystatin I and Soybean Bowman–Birk Inhibitor, on the Aphid Macrosiphum euphorbiae (Homoptera: Aphididae) and Its Parasitoid Aphelinus abdominalis (Hymenoptera: Aphelinidae). J. Insect Physiol., 51: 75-86.
2. Biggs, D. R. and McGregor, P. G. 1996. Gut pH and Amylase and Protease Activity in Larvae of the New Zealand Grass Grub (Costelytra zealandica; Coleoptera: Scarabaeidae) as a Basis for Selecting Inhibitors. Insect Biochem. Molec. Biol., 26: 69–75.
3. Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding. Anal. Biochem., 72: 248–254.
4. Blanco-Labra, A., Martinez Gallardo, N. A., Sandoval Cardoso, L. and Delano Frier, J. 1996. Purification and Characterization of a Digestive Cathepsin D Proteinase Isolated from Tribolium castaneum Larvae (Herbst). Insect Biochem. Molec. Biol., 26: 95–100.
5. Bouayad, N., Rharrabe, K., Ghilani, N. and Sayah, F. 2008. Effects of Different Food Commodities on Larval Development and α-Amylase Activity of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). J. Stored Prod. Res., 44: 373-378.
6. Campos, F. A. P., Xavier-Filho, J., Silva, C. P. and Ary, M. B. 1989. Resolution and Partial Characterization of Proteinases and α-Amylases from Midguts of Larvae of the Bruchid Beetle Callosobruchus maculates (F.). Comp. Biochem. Physiol., B92: 51–57.
7. Chen, M. S. 2008. Inducible Direct Plant Defense against Insect Herbivores: A Review. J. Insect Sci., 15: 101–114.
8. Chown, S. L. and Nicolson, S. W. 2004. Insect Physiological Ecology Mechanisms and Patterns. Oxford University, UK, 254 PP.
9. Cohen, A. C. 1993. Organization of Digestion and Preliminary Characterization of Salivary Trypsin-like Enzyme in a Predaceous Heteropteran, Zelus renardii. J. Insect Physiol., 39: 823–829.
10. Elpidina, E. N., Vinokurov, K. S., Gromenko, V. A., Rudenskaya, Y. A., Dunaevsky, Y. E. and Zhuzhikov, D. P. 2001. Compartmentalization of Proteinases and Amylases in Nauphoeta cinerea Midgut. Arch. Insect Biochem. Physiol., 48: 206–216.
11. Folin, O. and Ciocalteu, V. 1927. On Tyrosine and Tryptophane Determinations in Proteins. J. Biol. Chem., 73: 627–650.
12. Gatehouse, A. M. R., Gatehouse, J. A., Dobie, P., Kilminster, A. M. and Boulter, D. 1979. Biochemical Basis of Insect Resistance in Vigna unguiculata. J. Sci. Agric. Food Agri., 30: 948–958.
13. Gatehouse, A. M. R., Butler, K. J., Fenton, K. A. and Gatehouse, J. A. 1985. Presence and Partial Characterization of a Major Proteolytic Enzyme in the Larval Gut of Callosobruchus maculatus. Entomol. Expt. Appl., 39: 279–286.
14. Gatehouse, J. A. and Gatehouse, A. M. R. 1999. Genetic Engineering of Plants for Insect Resistance. In: “Biological and Biotechnological Control of Insect Pests”, (Eds.): Rechcigl, J. E. and Rechcigl, N. A. CRC Press, USA, PP. 211-241.
15. Hosseininaveh, V., Bandani, A. R., Azmayeshfarda, P., Hosseinkhani, S. and Kazzazi, M. 2007. Digestive Proteolytic and Amylolytic Activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). J. Stored Prod. Res., 43: 515– 522.
16. Jongsma, M. A. and Bolter, C. 1997. The Adaptation of Insects to Plant Protease Inhibitors. J. Insect Physiol., 43: 885-896.
17. Kazemi, F., Talebi, A. A., Fathipour and Y. and Farahani, S. 2009. A Comparative Study on the Effect of Four Legominose Spices on Biological and Population Growth Parameters of Callosobruchus maculatus (F.) (Col.: Bruchidae). Advanc. Environ. Biol., 3(3): 226-232.
18. Kitch, L. W. and Murdock, L. L. 1986. Partial Characterization of a Major Thiol Proteinase from Larvae of Callosobruchus maculatus F. Arch. Insect Biochem. Physiol., 3: 561–575.
19. Lawrence, P. K. and Koundal, K. R. 2002. Plant Protease Inhibitors in Control of Phytophagous Insects. Electronic J. Biotech., 5: 93–109.
20. Lemos, F. J. A., Campos, F. A. P., Silva, C. P. and Xavier-Filho, J. 1990. Proteinases and Amylases of Larval Midgut of Zabrotes subfasciatus Reared on Cowpea (Vigna unguiculata) Seeds. Entomol. Expt. Appl., 56: 219–227.
21. Lwalaba, D., Hoffmann, K. H. and Woodring, J. 2010. Control of the Release of Digestive Enzymes in the Larvae of the Fall Armyworm, Spodoptera frugiperda. Arch. Insect Biochem. Physiol., 73: 14-29.
22. Murad, A. M., Noronha, E. F., Miller, R. N. G., Costa, F. T., Pereira, C. D., Mehta, A., Caldas, R. A. and Franco, O. L. 2008. Proteomic Analysis of Metarhizium anisopliae Secretion in the Presence of the Insect Pest Callosobruchus maculates. Microbiol., 154: 3766-3774.
23. Murdock, L. L., Brookhart, G., Dunn, P. E., Foard, D. E., Kelley, S., Kitch, L., Shade, R. E., Shukle, R. H. and Wolfson, J. L. 1987. Cysteine Digestive Proteinases in Coleoptera. Comp. Biochem. Physiol., B 87: 783–787.
24. Oppert, B., Hartzer, K. and Zuercher, M. 2002. Digestive Proteinases in Lasioderma serricorne (Coleoptera: Anobiidae). Bull. Entomol. Res., 92: 331–336.
25. Oppert, B., Morgan,T. D., Hartzer, K., Lenarcic, B., Galesa, K., Brzin, J., Turk, V.,Yoza,K., Ohtsubo, K. and Kramer, K. J. 2003. Effects of Proteinase Inhibitors on Digestive Proteinases and Growth of the Red Flour Beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae. Comp. Biochem. Physiol., C134: 481–490.
26. Ouedraogo, A. P., Sou, S., Sanon, A., Monge, J. and Huignard, J., Tran, B. and Credland, P. F. 1996. Influence of Temperature and Humidity on Populations of Callosobruchus maculates (Coleoptera: Bruchidae) and Its Parasitoid Dinamus basalis (Pteromalidae) in Two Zones of Burkina Faso. Bull. Entomol. Res., 86: 695-702.
27. Pereira, J. L., Franco, O. L. and Noronha, E. F. 2006. Production and Biochemical Characterization of Insecticidal Enzymes from Aspergillus fumigatus Toward Callosobruchus maculates. Curr. Microbiol., 52: 430-434.
28. Saberi Riseh, N., Ghadammyari, M., Hosseininaveh, V., Motamedinia, B. and Aghaali, N. 2014. Efect of Inhibitors from Plant Seeds on Digestive Proteolytic Activities in Larvae of Date Palm Fruit Stalk Borer, Oryctes elegans Prell (Coleoptera: Scarabaeidae). J. Agr. Sci. Tech., 16: 981-992.
29. Saikia, M., Singh, Y. T., Bhattacharya, A. and Mazumdar-Leighton, S. 2011. Expression of Diverse Midgut Serine Proteinases in the Sericigenous Lepidoptera Antheraea assamensis (Helfer) is Influenced by Choice of Host Plant Species. Insect Molec. Biol., 1–13.
30. Silva, C. P. and Xavier-Filho, J. 1991. Comparison between the Levels of Aspartic and Cysteine pro-teinases of the Larval Midguts of Callosobruchus maculatus (F) and Zabrotes subfasciatus (Boh) (Coleoptera, Bruchidae). Comp. Biochem. Physiol., B99: 529–533.
31. Silva, C. P., Terra, W. R., Xavier-Filho, J. X., Grossi de sa, M. F., Lopes, A. R. and Pontes, E. G., 1999. Digestion in Larvae of Callosobruchus maculatus and Zabrotes subfasciatus (Coleoptera: Bruchidae) with Emphasis on α-Amylases and Oligosaccharidases. Insect Biochem. Molec. Biol., 29: 355-366.
32. Taheri, M. S. 1995. Study of Food Preference and Comparison of Life Cycle Cowpea Weevil on Various Iranian Pea. Appl. Entomol. Phytopathol., 63(1 and 2): 1-8.
33. Terra, W. R. and Ferreira, C. 1994. Insect Digestive Enzymes: Properties, Compartmentalization and Function. Comp. Biochem. Physiol., B 109:1–62.
34. Vinokurov, K. S., Elpidina, E. N., Oppert, B., Prabhakar, S., Zhuzhikov, D. P., Dunaevsky, Y. E. and Belozersky, M. A. 2006. Diversity of Digestive Proteinases in Tenebrio molitor (Coleoptera: Tenebrionidae) Larvae. Comp. Biochem. Physiol., B 145: 126–137.
35. Wieman, K. F. and Nielsen, S. S. 1988. Isolation and Partial Characterization of a Major Gut Proteinase from Larval Acanthoscelides obtectus Say (Coleoptera: Bruchidae). Comp. Biochem. Physiol., B 89: 419–426.
36. Zibaee, A. and Hajizadeh, J. 2013. Proteolytic Activity in Plagiodera versicolora Laicharting (Coleoptera: Chrysomelidae): Characterization of Digestive Proteases and Effect of Host Plants. J. Asia-Pacific Entomol., 16: 329-334.