Smart Robotic Weed Control System for Sugar Beet

Authors
1 Department of Electrical and Electronics Engineering, Faculty of Engineering, Karamanoglu Mehmetbey University, P.O. Box: 70100, Karaman, Turkey.
2 Department of Agricultural Machinery, Faculty of Agriculture, Selcuk University, P. O. Box: 42100, Konya, Turkey.
Abstract
While weeds in sugar beet farming reduce crop yield and quality, they also lead to higher labor and material losses. In recent years, in order to eliminate or reduce the damage caused by weeds in sugar beet farming, weed control has gained importance. To this end, various studies have been conducted on robotic weed control by detecting weeds using image processing algorithms and hoeing or spraying the weeds. In this study, weeds in sugar beet fields were detected by the image processing algorithm and were sprayed with a liquid. When height of spraying nozzle above the ground was 30 cm and 50 cm, measurements of spraying robot were carried out for 8 different speeds. The weed surface covering area of spraying liquid was evaluated by two different methods. A decrease of 40% in nozzle height of smart spraying robot caused a decrease of about 12.18% at 4 different weeds surface covering area (cm2) of spraying liquid and a decrease of 16.70% at weed surface covering area (pixels) of spraying liquid.

Keywords


1. Aitkenhead, M. J., Dalgetty, I. A., Mullins, C. E., McDonald, A. J. and Strachan, N. J. 2003. Weed and Crop Discrimination Using Image Analysis and Artificial Intelligence Methods. Comput. Electron. Agric., 39: 157–171.
2. Alchanatis, V., Ridel, L., Hetzroni, A. and Yaroslavsky, L. 2005. Weed Detection in Multi-Spectral Images of Cotton Fields. Comput. Electron. Agric., 47: 243–260.
3. Arribas, J.I., Sánchez-Ferrero, G.V., Ruiz-Ruiz, G. and Gómez-Gil, J. 2011. Leaf Classification in Sunflower Crops by Computer Vision and Neural Networks. Comput. Electron. Agric., 78: 9–18.
4. Astrand, B. and Baerveldt, A. 2002. An Agricultural Mobile Robot with Vision-Based Perception for Mechanical Weed Control. Auton. Robot, 13: 21–35.
5. Bakker, T., van Asselt, K., Bontsema, J., Muller, J. and van Straten, G. 2010. Systematic Design of an Autonomous Platform for Robotic Weeding. J. Terrramech., 47: 63–73.
6. Burks, T. F., Shearer, S. A., Heath, J. R. and Donohue, K. D. 2005. Evaluation of Neural Network Classifiers for Weed Species Discrimination. Biosyst. Eng., 91: 293–304.
7. Castleman, K. R. 1996. Digital Image Processing. Curve and Surface Fitting, 501-507
8. Cho, S. I., Lee, D. S. and Jeong, J. Y. 2002. Weed-Plant Discrimination by Machine Vision and Artificial Neural Network. Biosyst. Eng., 83: 275–280.
9. Dalen, G. V. 2004. Determination of the Size Distribution and Percentage of Broken Kernels of Rice Using Flatbed Scanning and Image Analysis. Food Res. Int., 37(1): 51-58.
10. Gil, E., Lorens, J., Llop, J., Fábregas, X., Escolá, A. and Rosell-Polo, J. R. 2013. Variable Rate Sprayer. Part 2. Vineyard Prototype: Design, Implementation, and Validation. Comput. Electron. Agric., 95: 136–150.
11. Habib, S., Islamb, M., Adnan, A. and Nawaz, S. 2007. Real Time Machine Vision Weeds-Classification for Selective Herbicide Application. The 2nd National Intelligent Systems And Information Technology Symposium, 30-31 October, 2007, Malaysia, PP. 142-146
12. Ismail, W., Ishak, W. and Abdul Rahman, K. 2010. Software Development for Real-time Weed Colour Analysis. Pertanika J. Sci. Technol., 18(2): 243-253
13. Jafari, A., Mohtasebi, S. S., Eghbali, H. and Omid, M. 2006. Weed Detection in Sugar Beet Field Using Machine Vision. Int. J. Agric. Biol., 8(5): 602–605
14. Jayas, D. and Karunakaran, C. 2005. Machine Vision System in Postharvest Tecnology. Stewart Postharvest Rev., 2(2): 1-9.
15. Keefe, P. D. 1992. A Dedicated Wheat Grain Image Analyzer. Plant Vari. Seed., 5(2): 27-33.
16. Kumar, K. A. and Thamizharasi, K. 2015. Gesture Controlled Robot using MEMS Accelerometer for Eradication of Weeds. Indian J. Sci. Technol., 8(5): 460-465.
17. Otsu, N. 1979. A Threshold Selection Method from Gray-level Histograms. IEEE Trans. Sys. Man. Cyber., 9(1): 62–66.
18. Perez, A. J., Lopez, F., Benlloch, J. V. and Christensen, S. 2000. Colour and Shape Analysis Techniques for Weed Detection in Cereal Fields. Comput. Electron. Agric., 25(3): 197-212.
19. Perez-Ruiz, M., Slaughter, D. C., Gliever, C. J. and Upadhyaya, S. K. 2012. Automatic GPSbased Intra-row Weed Knife Control System for Transplanted Row Crops. Comput. Electron. Agric., 80: 41–49.
20. Perez-Ruiz, M., Slaughter, D. C., Fathallah, F.A., Gliever, C. J. and Miller, B. J. 2014. Corobotic Intra-row Weed Control System. Biosyst. Eng., 126: 45–55.
21. Ramaraju, S. S. V. S. and Kumar, N. U. 2014. Saliency Detection Algorithm for Locating Perceptible Objects. Int. J. Electron. Commun. Technol., 5(3): 97-100.
22. Sabanci, K. and Aydin, C. 2013. Real-time Precise Spraying Robot for Weed Control. International Conference of Ecosystems (ICE), 1-5 June, 2013 Tirana, Albania, PP. 356-359.
23. Sabanci, K. and Aydin C. 2014. Görüntü İşleme Tabanlı Hassas İlaçlama Robotu, Tarım Bilimleri Dergisi. J. Agric. Sci., 20(4): 406-414.
24. Slaughter, D. C., Giles D. K. and Downey D. 2008. Autonomous Robotic Weed Control Systems: A Review. Comput. Electron. Agric., 61: 63–78.
25. Stafford, J. V. 2006. The Role of the Technology in the Emergence and Current Status of Precision Agriculture. In: “Handbook of Precision Agriculture”, (Ed.): Srinivasan, A. Food Products Press, New York, PP. 19–56.
26. Tewari, V. K., Kumar, A. A., Nare, B., Prakash, S. and Tyagi, A. 2014. Microcontroller Based Roller Contact Type Herbicide Applicator for Weed Control under Row Crops. Comput. Electron. Agric., 104: 40–45.
27. Tillett, N. D., Hague, T., Grundy, A. C. and Dedousis, A. P. 2008. Mechanical Within-row Weed Control for Transplanted Crops Using Computer Vision. Biosyst. Eng., 99: 171–178.
28. Trooien, T. P. and Heermann, D. F. 1992. Measurement and Simulation of Potato Leaf Area Using Image Processing. Model development. Trans. ASAE, 35(5): 1709-1712.
29. Yang, C. C., Prasher, S. O., Landry, J. A., Ramaswamy, H. and Ditommaso, A. 2000. Application of Artificial Neural Networks in Image Recognition and Classification of Crop and Weeds. Can. Agric. Eng., 42: 147–152.
30. Zhang, N., Wang, M. and Wang, N. 2002. Precision Agriculture: A Worldwide Overview. Comput. Electron. Agric., 36: 113–132.