Effect of Water Stress and Sodium Silicate on Antioxidative Response in Different Grapevine (Vitis vinifera L.) Cultivars

Authors
Biotechnology Department, Imam Khomeini International University, Qazvin, P. O. Box: 34149-288, Qazvin, Islamic Republic of Iran.
Abstract
Drought is still accounted as a serious agronomic problem and also one of the most important factors contributing to crop yield loss. The effect of sodium silicate (Na2SiO3, abbreviated as Si) was investigated on the four major antioxidant enzyme activities and five other relevant components in two different grapevine cultivars (Vitis vinifera L., cvs Mish Pestan and Sahebi, as tolerant and sensitive cultivars) under drought stress. The experiment was performed in a completely randomized design including three treatments i.e. the control, drought with no Si, and Si-drought (0.004M sodium silicate kg-1 soil), with three replications in a greenhouse. The results indicated that Si partially offset the negative impacts of drought stress by increasing the tolerance of grapevine by rising antioxidant enzyme activities and soluble protein content. Si treatment significantly affected the enzyme activities in both cultivars. Water stress induced a decrease in total Chlorophyll (Chl) and total protein contents, which was much larger in no-Si stress than in Si treatment. The results indicated that sodium silicate might decrease drought stress damages by raising the antioxidant enzymes activity.

Keywords


1. Abbasi, A. R., Sarvestani, R., Mohammadi, B. and Baghery, A. 2014. Drought Stress-Induced Changes at Physiological and Biochemical Levels in Some Common Vetch (Vicia sativa L.) Genotypes. J. Agr. Sci. Tech., 16: 505-516.
2. Aebi, H. E. 1984. Catalase In vitro. Method. Enzymol., 105: 121–126.
3. Akitha-Devi, M. K. and Giridhar, P. 2015. Variations in Physiological Response, Lipid Peroxidation, Antioxidant Enzyme Activities, Proline and Isoflavones Content in Soybean Varieties Subjected to Drought Stress. Proceedings of the National Academy of Sciences, India Section B: Biol. Sci., 85: 35-44.
4. Arnon, D. I. 1949. Copper Enzymes in Isolated Chloroplast, Polyphenoloxidase in Beta vulgaris. J. Plant Physiol., 24: 1–15.
5. Ashraf, M. and Foolad, M. R. 2007. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. J. Exp. Bot., 59: 206–216.
6. Azevedo-Neto, A. D., Prisco, J. T., Ene´as-Filho, J., Medeirosb, J. V. R. and Gomes-Filho, E. 2005. Hydrogen Peroxide Pre-treatment Induces Salt Stress Acclimation in Maize Plants. J. Plant Physiol., 162: 1114–1122.
7. Bates L. S., Waldren R. P. and Teare I..D. 1973. Rapid Determination of Free Proline for Water Stress Studies. J. Plant Soil, 39: 205–217.
8. Beauchamp, C. and Fridovich, F. 1971. Superoxide Dismutase: Cadmium Assay and an Assay Applicable to Acryl Amide Gels. Anal. Biochem., 44: 276–287.
9. Beis, A. and Patakas, A. 2012. Relative Contribution of Photoprotection and Anti-oxidative Mechanisms to Differential Drought Adaptation Ability in Grapevines. J. Exp. Bot., 78: 173–183.
10. Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding. Anal. Biochem., 72: 248–254.
11. Cao, B., Ma, Q., Zhao, Q., Wang, L. and Xu, K. 2015. Effects of Silicon on Absorbed Light Allocation, Antioxidant Enzymes and Ultrastructure of Chloroplasts in Tomato Leaves under Simulated Drought Stress. Sci. Hortic., 194: 53-62.
12. Chance, B. and Maehly, A. 1955. Assay of Catalase and Peroxidase. Method. Enzymol., 2: 764–817.
13. Carlos, A. C. C., Adriano, L. P., Leandro, B. L., Rogerio, P. S. and Giuseppina, P. P. L. 2009. Effects of Silicon and Drought Stress on Tuber Yield and leaf Biochemical Characteristics in Potato. Crop. Sci., 49: 949–954.
14. Chen, W., Yao, X., Cai, K. and Chen, J. 2011. Silicon Alleviates Drought Stress of Rice Plants by Improving Plant Water Status, Photosynthesis and mineral Nutrient Absorption. Biol. Trace. Elem. Res., 142: 67-76.
15. Fariduddin, Q., Khanam, S., Hasan, S. A., Ali, B., Hayat, S. and Ahmad, A. 2009. Effect of 28-Homobrassinolide on the Drought Stress Induced Changes in Photosynthesis and Antioxidant System of Brassica juncea L. Acta Physiol. Plant., 31: 889-897.
16. Gao, X., Zou, G. H., Wang, L. and Zhang, F. 2006. Silicon Decrease Transpiration Rate and Conductance from Stomata of Maize Plants. J. Plant Nutr., 29: 1637–1647.
17. Genard, H., Saos, J. L. E., Hillard, J., Tremolieres, A. and Boucaud, J. 1991. Effect of Salinity on Lipid Composition, Glycine Betaine Content and Photosynthetic Activity in Chloroplasts of Suaeda maritima. Plant Physiol. Biochem., 29: 421–427.
18. Grieve, C. M. and Grattan, S. R. 1983. Rapid Assay for Determination of Water Soluble Quaternary Ammonium Compounds. Plant Soil, 70: 303–307.
19. Hart, M. A., Tyson, H. and Bloomberg, B. 1971. Measurement of Activity of Peroxidase Isoenzymes in Flax (Linum usitatissimum). Can. J. Bot., 49: 2129–2137.
20. Hattori, T., Inanaga, S., Araki, H., An, P., Morita, S., Luxova, M. and Lux, A. 2005. Application of Silicon Enhanced Drought Tolerance in Sorghum Bicolor. Physiol. Plant., 123: 459–466.
21. Jiao-jing, L., Shao-hang, L., Pei-lei, X., Xiu-juan, W. and Ji-gang, B. 2009. Effects of Exogenous Silicon on the Activities of Antioxidant Enzymes and Lipid Peroxidation in Chilling-Stressed Cucumber Leaves. Agri. Sci. China, 8: 1075-1086.
22. Jung, S. 2004. Variation in Antioxidant Metabolism of Young and Mature Leaves of Arabidopsis thaliana Subjected to Drought. Plant Sci., 166: 459–466.
23. Kesba, H. H. and El-Beltagi, H. S. 2012. Biochemical Changes in grape Rootstocks Resulted from Humic Acid Treatments in Relation to Nematode Infection. Asian Pac. J. Trop. Biomed., 287-293.
24. Kim, Y. H., Khan, A. L., Waqas, M., Shim, J. K., Kim, D. H., Lee, K.Y. and Lee, I. J. 2014. Silicon Application to Rice Root Zone Influenced the Phytohormonal and Antioxidant Responses under Salinity Stress. J. Plant Growth. Regul., 33: 137-149.
25. Laemmli, U. K. 1970. Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4. Nature, 227: 680–685.
26. Lipiec, J., Doussan, C., Nosalewicz, A. and Kondracka, K. 2013. Effect of Drought and Heat Stresses on Plant Growth and Yield: A Review. Int. Agro. phys., 27: 463–477.
27. Ma, J. F., Miyake, Y. and Takahashi, E. 2001. Silicon as a Beneficial Element for Crop Plants. In: “Silicon in Agriculture: Studies in Plant Science”, (Eds): Datnoff, L. E., Noctor, G., Veljvoic-Jovanovic, S., Snyder, G. H. and Korndorfer, G. H. Elsevier Science, Amsterdam, PP. 17–39
28. Ma, J. F. and Takahashi, E. 2002. Soil, Fertilizer, and Plant Silicon Research in Japan. Elsevier Science, Amsterdam.
29. Mirzaee, M., Moieni, A. and Ghanati, F. 2013. Effects of Drought Stress on the Lipid Peroxidation and Antioxidant Enzyme Activities in two Canola (Brassica napus L.) Cultivars. J. Agr. Sci. Tech., 15: 593-602.
30. Mittler, R. 2002. Oxidative Stress, Antioxidants and Stress Tolerance. Trend. Plant Sci., 7: 405–410.
31. Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G. and Therios I. 2006. Boron Induced Oxidative Damage and Antioxidant and Nucleolytic Responses in Shoot Tips Culture of the Apple Rootstock EM9 (Malus domestica Borkh). Env. Exp. Bot., 56: 54–62.
32. Nahar, K., Hasanuzzaman, M., Mahabub-Alam, M. and Fujita, M. 2015. Glutathione Induced Drought Stress Tolerance in Mung Bean: Coordinated Roles of the Antioxidant Defence and Methylglyoxal Detoxification Systems. AOB Plant., 7: doi:10. 1093/aobpla/plv069.
33. Nakano, Y. and Asada, K. 1987. Purification of Ascorbate Peroxidase in Spinach Chloroplast: in Inactivation in Ascorbate Depleted Medium and Reactivation by Monodehydroascorbate Radical. Plant Cell Physiol., 28: 131-140.
34. Noctor, G., Veljvoic-Jovanovic, S. and Foyer, C. H. 2000. Peroxide Processing in Photosynthesis: Anti-oxidant Coupling and Redox Signaling. Philos. Trans. R. Soc. London, 355: 1465–1475.
35. Robertson, E. F., Dannelly, H. K, Malloy. P. J. and Reeves, H. C. 1987. Rapid Isoelectric Focusing in a Vertical Polyacrylamide Minigel System. Anal. Biochem., 167: 290–294.
36. Sacala, E. 2009. Role of Silicon in Plant Resistance to Water Stress. J. Elementol., 14: 619–630.
37. Saeidi, M. and Abdoli, M. 2015. Effect of Drought Stress During Grain Filling on Yield and its Components, Gas Exchange Variables, and Some Physiological Traits of Wheat Cultivars. J. Agr. Sci. Tech., 17: 885-898.
38. Salekjalali, M., Haddad, R. and Jafari, B. 2012. Effects of Soil Water Shortages on the Activity of Antioxidant Enzymes and the Contents of Chlorophylls and Proteins in Barley. Am. Eur. J. Agric. Environ. Sci., 12: 57-63.
39. Soylemezoglu, G., Demir, K., Inal, A. and Gunes, A. 2009. Effect of Silicon on Antioxidant and Stomatal Response of Two Grapevine (Vitis vinifera L.) Rootstocks Grown in Boron Toxic, Saline and Boron Toxic-saline Soil. Sci. Hortic., 123: 240–246.
40. Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, A. E., Kobayashi, S., Kawamura, Y., Tanaka, K. and Inanaga, S. 2011. Effect of Silicon Application on Sorghum Root Responses to Water Stress. J. Plant Nutr., 34: 71–82.
41. Tale-Ahmad, S. and Haddad, R. 2011. Study of Silicon Effects on Antioxidant Enzyme Activities and Osmotic Adjustment of Wheat under Drought Stress. Czech J. Genet. Plant Breed., 47: 17-27.
42. Tripathi, D. K., Singh, V. P., Gangwar, S., Prasad, S. M., Maurya, J. N. and Chauhan, D. K. 2014. Role of Silicon in Enrichment of Plant Nutrients and Protection from Biotic and Abiotic Stresses. Improv. Crop. Era. Clim. Change., 39-56.
43. Urbanek, H., Kuzniak-Gebarowska, E. and Herka, K. 1991. Elicitation of Defense Response in Bean Leaves by Botrytis Cinerea polygalactronase. Acta Physiol. Plant., 13: 43-50.