The Inhibitory Activity of Triticale, Rye and Black Nightshade Seed Proteinaceous Extracts against Potato Tuberworm Digestive α-Amylase and Protease

Authors
1 Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Islamic Republic of Iran.
2 Department of Plant Protection, College of Agricultural and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran.
Abstract
Potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera; Gelechiidae) is a worldwide pest of solanaceous crops. Larvae feed inside galleries in foliage, stems and tubers making chemical control unsuccessful, so other control methods should be applied. In recent years many plants have received genes that encode toxic proteins as a strategy to resist insect pests. In this study, optimal pH and temperature of digestive α-amylase and protease activities of potato tuberworm and the effect of triticale (X Triticosecale wittmack cv. Sanabad), rye (Secale cereale L. cv. Danko) and black nightshade (Solanum nigrum L.) seed proteinaceous extracts against enzymes activities were evaluated using starch 1% and azocasein 2% as a substrate, respectively. The optimum pH of α-amylase and protease activities was found to be highly alkaline. Enzymes inhibition assays showed that amylase activity was significantly affected by extracts from triticale and rye by pH (P= 0.05; maximum effect at pH 9) and influencing of protease activity by extracts mentioned above did not vary by pHs 8-11 and 9-11, respectively. Extracts from black nightshade seed had no effect on enzymes activity. Inhibition manner of various concentrations; 1.5, 0.75, 0.375, 0.187 and 0.093 (mg protein ml-1) of extracts were dose-dependent. Maximum inhibitory effect occurred at the highest concentration and the minimum was at the lowest concentration. In polyacrylamide gel assay, both enzymes, without inhibitors showed two isozymes, which at highest concentration of extracts, both bands disappeared or their intensity decreased. So, these proteins can be introduced to be encoded in producing resistant potato crops against potato tuberworm.

Keywords


1. Alfonso-Rubi, J., Ortego, F., Castariera, P., Carbonero, P. and Diaz, I. 2003. Transgenic Expression of Trypsin Inhibitor Cme from Barley in Indica and Japonica Rice, Confers Resistance to The Rice Weevil Sitophilus oryzae. Transgen. Res., 12: 23-31.
2. Amorim, T. M. L., Macedo, L. L. P., Uchoa, A. F., Oliviera, A. S., Pitanga, J. C. M., Macedo, F. P., Santos, E. A. and Sales, M. P. 2008. Proteolytic Digestive Enzymes and Peritrophic Membranes during the Development of Plodia interpunctella (Lepidoptera: Piralidae): Targets for the Action of Soybean Trypsin Inhibitor (SBTI) and Chitin-binding Vicilin (EvV). J. Agri. Food Chem., 56: 7738-7745.
3. Baker, J. E. 1987. Purification of Isoamylases from the Rice Weevil, Sitophilus orizae L. by HPLC and Their Interaction with Partially Purified Amylase Inhibitor from Wheat. Insect Biochem., 17: 37-44.
4. Baker, J. E. 1989. Interaction of Partially-purified Amylases from Larval Anagasta kuehniella Zeller (Lep: Pyralidae) with Amylase Inhibitors from Wheat. Comp. biochem. Phys., 2: 239-246.
5. Bernfeld, P. 1955. Amylase, α and β. Method Enzymol., 1: 149-154.
6. Borzoei, E., Bandani, A. R., Dastranj, M. and Belbasi, M. 2013. Effect of Proteinaceous Extract of Wheat Seeds on α-amylase Activity of Diamondback Moth, Plutella xylustella (L.) (Lepidoptera: Plutellidae). SOAJ Entomol. Studies, 2: 1-10.
7. Borzoui, E., Bandani, A. R. and Goldansaz, S. H. 2013. Effects of Cereal Seed Protinaceous Extracts on α-amylase and Proteinase Activity of Salivary Glands of Carob Moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). J. Crop Protec., 2: 285-296.
8. Bradford, M. A. 1976. Rapid and Sensitive Method for The Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein–dye Binding. Anal. Biochem., 72: 248-254.
9. Dastranj, M., Bandani, A. R. and Mehrabadi, M. 2013. Age-specific Digestion of Tenebrio molitor (Coleoptera: Tenebrionidae) and Inhibition of Proteolytic and Amylolytic Activity by Plant Proteinaceous Seed Extracts. J. Asia-Pacific Entomol., 16: 309-315.
10. De Leo, F., Bonade-Bttino, M., Ceci, L. R., Gallerani, R. and Jouanin, L. 2001. Effects of a Mustard Trypsin Expressed in Different Plants on Three Lepidopteran Pests. Insect Biochem. Mol. Biol., 31: 593-602.
11. Douches, D. S., Pett, W., Santos, F., Coombs, J., Grafius, E., Metry, E. A. W. L., El-Din, T. N. and Madkour, M. 2004. Field and Storage Testing Bt Potatoes for Resistance to P. operculella (Lepidoptera: Gelechiidae). J. Econ. Entomol., 97: 1425-1431.
12. Falco, M. C. and Silva-Filho, M. C. 2003. Expression of Soybean Proteinase Inhibitors in Transgenic Sugarcane Plants: Effects on Natural Defense against Diatraea saccharalis. Plant Phys. Biochem., 41: 761-766.
13. Franco, O. L., Regden, D. J., Melo, F. R. and Grossi-de-Sa, M. F. 2002. Plant Alpha Amylase Inhibitors and Their Interaction with Insect Alpha Amylases. Structure, Function and Potential for Crop Protection. Eur. J. Biochem., 269: 397-412.
14. Gatehouse, A. M. R., Davidson, G. M., Newell, C. A., Merrywater, A., Hamilton, W. D. O. and Burgess, E. P. J. 1997. Transgenic Potato Plants with Enhanced Resistance to The Tomato Moth, Lacanobia oleracea: Growth Room Trials. Mol. Breed., 3: 49-63.
15. Gatehouse, A. M. R., Norton, E., Davison, G. M., Babbe, S. M., Newell, C. A. and Gatehouse, J. A. 1998. Digestive Proteolytic Activity in Larvae of Tomato Moth, Acanobia oleracea: Effects of Plant Protease Inhibitors In vitro and In vivo. J. Insect Phys., 45: 545-558.
16. Harrison, R. L. and Bonning, B. C. 2010. Proteases as Insecticidal Agents. Toxin., 2: 935-953.
17. Hosseininaveh, V., Bandani, A. R., Azmayeshfard, P., Hosseinkhani, S. and Kazzazi, M. 2007. Digestive Proteolytic and Amylolytic Activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). J. Stored Prod. Res., 43: 515-522.
18. Hosseinkhani, S. and Nemat-Gorgani, M. 2003. Partial Unfolding of Carbonic Anhydrase Provides a Method for Its Immobilizationon Hydrophobic Adsorbents and Protects It against Irreversible Thermoinactivation. Enzyme Microb. Tech., 33: 179-184.
19. Laemmli, U. K. 1970. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227: 680-685.
20. Lawrence, P. K. and Koundal, K. R. 2002. Plant Protease Inhibitors in Control of Phytophagous Insects. Electron. J. Biotechn., 5: 93-109.
21. Mehrabadi, M. and Bandani, A. R. 2010. New Approach toward α-Amylase Electrophoresis and Isoamylase Detection. Munis. Entomol. Zool., 5: 1085-1087.
22. Mehrabadi, M., Bandani, A. R. and Saadati, F. 2010. Inhibition of Sunn Pest, Eurygaster integriceps, α-Amylases By α-Amylase Inhibitors (T-αAI) from Triticale. J. Insect sci., 10:179-191.
23. Mehrabadi, M., Bandani, A. R., Saadati, F. and Mahmudvand, M. 2011. Alpa-amylase Activity of Stored Products Insects and Its Inhibition by Medicinal Plant Extracts. J. Agr. Sci. Tech., 13: 1173-1182.
24. Mehrabadi, M., Bandani, A. R. and Kwon, O. 2011. Biochemical Characterization of Digestive α-d-Glucosidase and β-Dglucosidase from Labial Glands and Midgut of Wheat Bug Eurygaster maura (Hemiptera: Scutelleridae). J. Entomol. Res. Soc., 41: 81-87.
25. Mehrabadi, M., Bandani, A. R., Mehrabadi, R. and Alizadeh, H. 2012. Inhibitory Activity of Proteinaceous a-amylase Inhibitors from Triticale Seeds against Eurygaster integriceps Salivary α-Amylases: Interaction of the Inhibitors and the Insect Digestive Enzymes. Pestic. Biochem. Phys., 102: 220-228.
26. Melo, F. R., Sales, M. P., Pereira L. S., Bloch, C., Franco, O. L. and Ary, M. B. 1999. Alpha-amylase Inhibitors from Cowpea Seeds. Protein Peptide Lett., 6: 385-390.
27. Morton, R. L., Schroeder, H. E., Bateman, K. S., Chrispeels, M. J., Armstrong, E. and Higgins, T. J. V. 2000. Bean α-Amylase Inhibitor 1 in Transgenic Peas (Pisum sativum) Provides Complete Protection from Pea Weevil (Bruchus pisorum) under Field Conditions. Proc. Natl. Acad. Sci. USA, 97: 3820-3825.
28. Pytelková, J., Hubert, J., Lepšík, M., Šobotník, J., Šindelka, R., Křížková, I., Horn, M. and Mareš, M. 2009. Digestive α-Amylases of The Flour Moth Ephestia kuehniella– Adaptation to Alkaline Environment and Plant Inhibitors. FEBS J., 276: 3531-3546.
29. Rondon, S. I. 2010. The Potato Tuberworm: A Literature Review of Its Biology, Ecology, and Control. Am. J. Potato Res., 87:149-166.
30. Ross, H. 1986. Potato Breeding and Perspectives. Berlin Verlag, 123.
31. Saadati, F., Bandani, A. R. and Moslemi, A. 2011. Effect of Plant Seeds Protein Extract on the Sunn Pest, Eurygaste integriceps Puton, Growth and Development and Its Gut Serine Protease Activity. Afr. J. Biotechnol., 10: 11502-11510.
32. Shands, W. A., Allen, N. and Gilmore, J. W. 1938. A Survey of Insect Injury to Tobacco Grow for The Flue Curing. J. Econ. Entomol., 3: 116-117.
33. Sivakumar, S., Mohan, M., Franco, O. L. and Thayumanavan, B. 2006. Inhibition of Insect Pest α-amylases By Little and Finger Millet Inhibitors. Pestic. Biochem. Phys., 85: 155-160.
34. Svensson, B., Fukuda, K., Nielsen, P. K. and Bonsager, B. C. 2003. Proteinaceous α-Amylase Inhibitors. BBA, 1696: 145-156.
35. Valencia-Jiménez, A., Arboleda Valencia, J. W. and Grossi DeSa, M. F. 2008. Activity of α-amylase Inhibitors from Phaseolus coccineus on Digestive α-Amylases of the Coffee Berry Borer. J. Agri. Food Chem., 56: 2315-2320.
36. Terra, W. R. and Ferreira, C. 1994. Insect Digestive Enzymes: Properties, Compartmentaliztion and Function. Comp. Biochem. Phys., 109: 1-62.
37. Walker, A. J., Ford, L., Majerus, M. E. N., Geoghegan, I. E., Birch, N., Gatehouse, J. A. and Gatehouse, A. M. R. 1998. Characterization of The Midgut Digestive Proteinase Activity of The Two Spot Ladybird (Adalia bipunctata L.) and Its Sensitivity to Proteinase Inhibitors. Insect Biochem. Molec. Biol., 28: 173-180.
38. Zeller, P. C. 1873. Beitrage Zur Kenntniss der Nordamericanishchen Nachtfolter, Besonders der Microlepidopteran. Verh. Zool. Ges. Wien., 23: 262-263.