Enhancement of Thermal Stability and Antioxidant Activity of Thyme Essential Oil by Encapsulation in Chitosan Nanoparticles

Authors
Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, P. O. Box: 14115-336, Islamic Republic of Iran.
Abstract
The use of essential oils as the preservative agents in food industry faces the problem of interactions with food matrix components, low solubility in aqueous phase, high volatile character and sensitivity to environmental conditions. The aim of this study was to enhance thermal stability and antioxidant activity of Thyme essential Oil (TO) by encapsulation in Chitosan Nanoparticles (CS-NP). TO was encapsulated in CS-NP with an emulsion–ionic gelation crosslinking method and the construction was confirmed by Fourier Transform Infrared spectroscopy (FT-IR) and thermogravimetric analysis techniques. The effect of CS: TO weight ratio encapsulation efficiency, loading capacity, particle size and zeta potential of TO-loaded Chitosan Nanoparticle (CS-NP-TO) were investigated. The encapsulated TO was decomposed at a higher temperature (318-325.4ºC) than free TO (170ºC) reflecting the enhanced thermal stability of TO by encapsulation. Also, when TO was encapsulated in CS-NP, antioxidant activity proved to be superior from that of free TO. The considerable antioxidant activity and thermal stability reveal that such particles have promising application for delivery of TO in medicine, food and feed.

Keywords


1. Ajun, W., Yan, S., Li, G. and Huili, L. 2009. Preparation of Aspirin and Probucol in Combination Loaded Chitosan Nanoparticles and In vitro Release Study. Carbohydr. Polym., 75: 566–574.
2. Alishahi, A., Mirvaghefi, A., Tehrani, M. R., Farahmand, H., Shojaosadati, S. A., Dorkoosh, F. A. and Lsabee, M. Z. 2011. Shelf Life and Delivery Enhancement of Vitamin C Using Chitosan Nanoparticles. Food Chem., 126: 935–940.
3. Barbosa-Cánovas, G., Mortimer, A., Lineback, D., Spiess, W., Buckle, K. and Colonna, P. 2009. Global Issues in Food Science and Technology, In: “Nanostructured encapsulation systems: food antimicrobials” (Eds.): Weiss, J., Gaysinsky, S., Davidson, M. and McClements, J., Academic Press. New York, PP. 425-479.
4. Beyki, M., Zhaveh, S., Khalili, S. T., Rahmani-Cherati, T., Abollahi, A., Bayat, M., Tabatabaei, M. and Mohsenifar, A. 2014. Encapsulation of Mentha piperita Essential Oils in Chitosan-cinnamic Acid Nanogel with Enhanced Antimicrobial Activity against Aspergillus flavus. Ind. Crops Prod., 54: 310–319.
5. Bulmer, C., Margaritis, A. and Xenocostas, A. 2012. Production and Characterization of Novel Chitosan Nanoparticles for Controlled Release of rHu-Erythropoietin. Biochem. Eng. J., 68: 61-69.
6. Cho, E. G., Holback, H., Liu, K. C., Abouelmagd, S. A., Park, J. and Yeo, Y. 2013. Nanoparticle Characterization: State of the Art, Challenges and Emerging Technologies. Mol. Pharmacol., 10: 2093-2110.
7. Davidov-Pardo, G., Joye, I. G. and McClements, D. J. 2015. Encapsulation of Resveratrol in Biopolymer Particles Produced Using Liquid Antisolvent Precipitation. Part 1. Preparation and Characterization. Food Hydrocol., 45: 309-316.
8. Esmaeili, A. and Asgari, A. 2015. In vitro Release and Biological Activities of Carum copticum Essential Oil (CEO) Loaded Chitosan Nanoparticles. Int. J. Biol. Macromol., 81: 283-290.
9. Fan, W., Yan, W., Xu, Z. and Ni, H. 2012. Formation Mechanism of Monodisperse, Low Molecular Weight Chitosan Nanoparticles by Ionic Gelation Technique. J. Coll. Surf. B Biointerfaces, 90: 21-27.
10. Gan, Q., Wang, T., Cochrane, C. and McCarron, P. 2005. Modulation of Surface Charge, Particle Size and Morphological Properties of Chitosan–TPP Nanoparticles Intended for Gene Delivery. J. Coll. Surf. B Biointerfaces, 44: 65-73.
11. Hosseini, S. F., Zandi, M., Rezaei, M. and Farahmandghavi, F. 2013. Two-step Method for Encapsulation of Oregano Essential Oil in Chitosan Nanoparticles: Preparation, Characterization and In vitro Release Study. J. Carbohydr. Polym., 95: 50–56.
12. Hatano, T., Kagawa, H., Yasuhara, T. and Okuda, T. 1988. Two New Flavonoids and Other Constituents in Licorice Root: Their Relative Astringency and Scavenging Effects. Chem. Pharm. Bull., 36: 2090–2097.
13. Hijo, A. A. C. T., Campos, A. A., Costa, J. M. G., Silva, E. K., Azevedo, V. M., Yoshida, M. I. and Borges, S. V. 2015. Physical and Thermal Properties of Oregano (Origanum vulgare L.) Essential Oil Microparticles. J. Food Process. Eng., 38: 1-10.
14. Huang, D. J., Ou, B. X. and Prior, R. L. 2005. The Chemistry Behind Antioxidant Capacity Assays. J. Agric. Food Chem., 53: 1841-1856.
15. Hyldgaard. M., Mygind, T. and Meyer, R. L. 2012. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front Microbiol., 3: 1-24.
16. Jang, K. I. and Lee, H. G. 2008. Stability of Chitosan Nanoparticles for L-Ascorbic Acid during Heat Treatment in Aqueous Solution. J. Agric. Food Chem., 56: 1936-1941.
17. Jingou, J., Shilei, H., Weiqi, L., Danjun, W., Tengfei, W. and Yi, X. 2011. Preparation, Characterization of Hydrophilic and Hydrophobic Drug in Combine Loaded Chitosan/Cyclodextrin Nanoparticles and In vitro Release Study. J. Coll. Surf. B Biointerfaces, 83: 103–107.
18. Keawchaoon, L. and Yoksan, R. 2011. Preparation, Characterization and In vitro Release Study of Carvacrol-loaded Chitosan Nanoparticles. J. Coll. Surf. B Biointerface., 84: 163-171.
19. Khalili, S.T., Mohsenifar, A., Beyki, M., Zhaveh, S., Rahmani-Cherati, T., Abdollahi, A., Bayat, M. and Tabatabaei, M. 2015. Encapsulation of Thyme Essential Oils in Chitosan-benzoic Acid Nanogel with Enhanced Antimicrobial Activity against Aspergillus flavus. LWT-Food Sci. Technol., 60: 502-508.
20. Lee, J. S., Park, S. A., Chung, D. and Lee, H. G. 2011. Encapsulation of Astaxanthin-rich Xanthophyllomyces dendrorhous for Antioxidant Delivery. Int. J. Biol. Macromol., 49: 268-273.
21. Lopez-Rubio, A., Gavara, R. and Lagaron, J. 2006. Bioactive Packaging: Turning Foods into Healthier Foods through Biomaterials. Trend. Food Sci. Technol., 17: 567–575.
22. Mohammadi, A., Hashemi, M. and Hosseini, S. M. 2015. Nanoencapsulation of Zataria multiflora Essential Oil Preparation and Characterization with Enhanced Antifungal Activity for Controlling Botrytis cinerea, the Causal Agent of Gray Mould Disease. Innov. Food Sci. Emerg, Technol., 28: 73-80.
23. Morales, R. 2002. Medicinal and Aromatic Plants Industrial Profiles, In: "The History, Botany and Taxonomy of the Genus Thymus", (Eds.): Stahl-Biskup, E. and Saez, F. Taylor Francis, London, PP. 1–44.
24. Panyam, J. and Labhasetwar, V. 2003. Biodegradable Nanoparticles for Drug and Gene Delivery to Cells and Tissue. Adv. Drug Delivery Rev., 55: 329-347.
25. Peniche-Covas, C., Arguelles-Monal, W. and Rom, J. S. 1993. A Kinetic Study of the Thermal Degradation of Chitosan and a Mercaptan Derivative of Chitosan. Polym. Degrad. Stabil., 39: 21–28.
26. Schulz, H., Quilitzsch, R. and Kruger, H. 2003. Rapid Evaluation and Quantitative Analysis of Thyme, Oregano and Chamomile Essential Oils by ATR-IR and NIR Spectroscopy. J. Mol. Struct., 661-662: 299-306.
27. Tao, F., Hill, L. E., Peng, Y. and Gomes, G. L. 2014. Synthesis and Characterization of β-Cyclodextrin Inclusion Complexes of Thymol and Thyme Oil for Antimicrobial Delivery Applications. LWT- Food Sci. Technol., 59: 247-255.
28. Wilson, B., Samanta, M. K., Santhi, K., Kumar, K. P. S., Ramasamy, M. and Suresh, B. 2010. Chitosan Nanoparticles as a New Delivery System for the Anti-Alzheimer Drug Tacrine. Nanomed. Nanotech. Biol Med., 6: 144-152.
29. Woranuch, S. and Yoksan, R. 2013. Eugenol-loaded Chitosan Nanoparticles. I. Thermal Stability Improvement of Eugenol through Encapsulation. J. Carbohydr. Polym., 96: 578– 585.
30. Wu, Y., Yang, W., Wang, C., Hu, J. and Fu, S. 2005. Chitosan Nanoparticles as a Novel Delivery System for Ammonium Glycyrrhizinate. Int. J. Pharm., 295: 235–245.
31. Xie, W., Xu, P. and Liu, Q. 2001. Antioxidant Activity of Water-soluble Chitosan Derivatives. Bioorg. Med. Chem. Lett., 11: 1699-1701.
32. Yoksan, R., Jirawutthiwongchai, J. and Arpo, K. 2010. Encapsulation of Ascorbyl Palmitate in Chitosan Nanoparticles by Oil-in-water Emulsion and Ionic Gelation Processes. Coll. Surf. B: Biointerfaces, 76: 292-297.
33. Zhang, L. and Kosaraju, S. L. 2007. Biopolymeric Delivery System for Controlled Release of Polyphenolic Antioxidants. Eur. Polym. J., 43: 2956–2966.