Linseed-Sunflower Meal Co-extrudate as a Functional Additive for Animal Feed – extrusion Optimization

Authors
1 Institute of Food Technology, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad, Serbia.
2 Faculty of Technology, University of Novi Sad, Bul. cara Lazara 1, 21000 Novi Sad, Serbia.
Abstract
The presented study shows a simple way for optimization of extrusion process, which was used for deterioration of cyanogenic glycosides – antinutritive components of linseed, with minimum damage of essential Alpha-Linolenic Acid (ALA) at the same time. Extrusion of the material was done on a laboratory single screw extruder. Content of Hydrogen cyanide (HCN) as a measurement of cyanogenic glycosides in produced co-extrudate and fatty acid composition were determined, together with basic chemical analyses, which were done in accordance with AOAC methods. Statistical analysis showed that HCN content in the product was the most dependent (P= 0.0002) on quadratic influence of moisture content of starting material. The highest HCN content (126 mg kg-1) was measured at the lowest moisture content (7%) and the lowest screw speed (240 rpm). Low moisture content caused weak volatilization of HCN along with the evaporating water, which was intensified with higher values of moisture content. However, increase in moisture content from 11.5 to 16% slightly increased the amount of present HCN, due to the lower material viscosity. Extrusion process caused some changes in fatty acid composition, but even the highest degradation of ALA did not exceed 4%. Linear and quadratic influence of moisture content on ALA reduction was significant (P< 0.05), as well as quadratic influence of screw speed. Specific attention has to be paid to selecting appropriate levels of screw speed and moisture content of the material which contains linseed, in order to achieve both detoxification of linseed and preservation of essential fatty acids.

Keywords


1. AOAC. 2000. Official Methods of Analysis. (Ed.): Horwitz, W. 17th AOAC International, Arlington, VA, USA.
2. AOCS. 2001. Method Ba 3-38 ‘Oficial Methods and Recommended Practices. (Ed.): Firestone, D. 5th Edition, AOCS, Champaign, IL, USA.
3. Beare–Rogers, J., Dieffenbacher, A. and Holm, J. V. 2001. Lexicon of Lipid Nutrition (IUPAC Technical report). Pure Appl. Chem.,73(4): 685-744.
4. Csengeri, I. 1996. Dietary Effects on Fatty Acid Metabolism of Common Carp. Arch. Anim. Nutr., 49(1): 73-92.
5. Contor, L. 2001. Functional Food Science in Europe. Nutr. Metab. Cardiovasc. Dis., 11(4 Suppl): 20–23.
6. Đurić, M., Gyura, J. and Zavargo, Z. 2004. The Analysis of Process Variables Influencing Some Characteristics of Permeate from Ultra- and Nano-filtration in Sugar Beet Processing. Desalination, 169: 167-183.
7. Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S. and dos Santos, W. N. L. 2007. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta, 597: 179–186.
8. Feng, D., Shen, Y. and Chavez, E. 2003. Effectiveness of Different Processing Methods in Reducing Hydrogen Cyanide Content of Linseed. J. Sci. Food Agr., 83: 836 – 841.
9. Gabiana, C. P. 2005. The Response of Linseed (Linum usitatissimum L) to Irrigation, Nitrogen and Plant Population. MSc. Thesis, Lincoln University, Canterbury, New Zealand.
10. Guerrero, P., Beatty, E., Kerry, J. P. and De la Caba, K. 2012. Extrusion of Soy Protein with Gelatin and Sugars at Low Moisture Content. J. Food Eng., 110: 53-59.
11. Htoo, J. K., Meng, X., Patience, J. F., Dugan, M. E. and Zijlstra, R.T. 2008. Effects of Coextrusion of Linseed and Field Pea on the Digestibility of Energy, Ether Extract, Fatty Acids, Protein, and Amino Acids in Grower-finisher Pigs. J. Anim. Sci., 86(11): 2942-2951.
12. Ivanov, D., Kokić, B., Brlek, T., Čolović, R., Vukmirović, Đ., Lević, J. and Sredanović, S. 2012. Effect of Microwave Heating on Content of Cyanogenic Glycosides in Linseed. Field Veget. Crop. Res., 49: 63-68.
13. Ivanov, D., Čolović, R., Lević, J. and Sredanović, S. 2012. Optimization of Supercritical Fluid Extraction of Linseed Oil Using RSM. Eur. J. Lipid Sci. Technol., 114(7): 807–815.
14. Ivanov, D., Čolović, R., Vukmirović, Đ., Lević, J., Kokić, B., Lević, Lj. and Đuragić, O. 2012. Influence of Process Parameters on Temperature Profile in Extruder Barrel and Nitrogen Solubility Index of Linseed Co-extrudate. The First International Symposium on Animal Science, November 8-10th, 2010, Belgrade, Serbia.
15. Ilo, S., Liu, Y. and Berghofer, E. 1999. Extrusion Cooking of Rice Flour and Amaranth Blends. LWT – Food Sci. Tech., 32(2): 79-88.
16. Jeong, I. -J. and Kim, K. -J. 2009. An Interactive Desirability Function Method to Multiresponse Optimization. Eur. J. Oper. Res., 195: 412–426.
17. Juárez, M., Dugan, M. E. R., Aldai, N., Aalhus, J. L., Patience, J. F., Zijlstra, R. T. and Beaulieu, A. D. 2010. Increasing Omega-3 Levels throgh Dietary Co-extruded Linseed Supplementation Negatively Affects Pork Palatability. Food Chem., 126: 1716-1723.
18. Karlović, Đ. and Andrić, N., 1996. Kontrola Kvaliteta Semena Uljarica. Savezni Zavod za Standardizaciju, Tehnološki Fakultet Novi Sad, Beograd.
19. Kumar, T. V. A., Samuel, D. V. K., Jha, S. K. and Sinha, J. P. 2015. Twin Screw Extrusion of Sorghum and Soya Blends: A Response Surface Analysis. J. Agric. Sci. Tech., 17(3): 649-656.
20. Lazić, Ž. 2004. Design of Experiments in Chemical Engineering. WILEY-VCH Verlag GmbH and Co., KGaA, Weinheim.
21. Lević, J. and Sredanović, S. 2012. Suncokretova Sačma. Institut za Prehrambene Tehnologije, Novi Sad.
22. Liang, M., Huang, S., Huff, H. E., Kerley, M. S. and Hsieh, F. 2002. Extrusion Cooking of Rapeseed Meal for Feeding Value Improvement. Appl. Engin. Agri., 18: 325–330.
23. Majak, W., McDiarmid, R. E., Hall, J. W. and Cheng, K. J. 1990. Factors that Determine Rate of Cyanogenesis in Bovine Ruminal Fluid In vitro. J Anim Sci 68: 1648-1655.
24. Morken, T., Kraugerud, O.F., Sørensen, M., Storebakken, T., Hillestad, M. and Christiansen, R., Øverland, M. 2012. Effect of Feed Processing Conditions and Acid Salts on Nutrient Digestibility and Physical Quality of Soy-based Diets for Atlantic Salmon (Salmo salar). Aquacult. Nutr., 18: 21-34.
25. Mostafaei, B. Ghobadian, B., Barzegar, M. and Banakar, A. 2013. Optimization of Ultrasonic Reactor Geometry for Biodiesel Production Using Response Surface Methodology. J. Agric. Sci. Tech., 15: 697-708.
26. Myers, R. H. and Montgomery, D. C. 1995. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley and Sons, New York.
27. O’Connor, J., Perry, H. and Harwood, J. 1992. A Comparison of Lipase Activity in Various Cereal Grains. J. Cereal Sci., 16: 153–163.
28. OOmah, B. D. and Mazza, G. 1993. Functional Properties, Uses of Linseed Protein. Inform., 6: 1246-1252.
29. Riaz, M. N. 2000. Extruders in Food Applications. Taylor and Francis Group, CRC Press, Boca Raton, Filadelfia.
30. Thacker, P. A., Racz, V. J. and Soita, H. W. 2004. Performance and Carcass Characteristics of Growing-finishing Pigs fed Barley-based Diets Supplemented with Linpro (Extruded Whole Linseed and Peas) or Soybean Meal. Can. J. Anim. Sci., 84 (4):681-688.
31. Trautmann, H. and Weihs, C. 2006. On the Distribution of the Desirability Index Using Harrington’s Desirability Function. Metrika, 63: 207-213.
32. Vetter, J. 2010. Plant cyanogenic Glycosides. Toxicon., 38: 11-36.
33. Wu, M., Li, D., Zhou, Y. -G., Brooks, M. S. -L., Chen, X. D. and Mao, Z. H. 2008. Extrusion Detoxification Technique on Flaxseed by Uniform Design Optimization. Sep. Purif. Tech., 61: 51 – 59.
34. Zademowski, R., Nowak-Polanska, H., Wicklund, T. and Fomal, L. 1997. Changes in Oat Lipids Affected by Extrusion. Nahrung, 41: 224-227.
35. Žilić, S., Šobajić, S., Mladenović Drinić, S., Kresović, B. and Vasić, M. 2010: Effects of Heat Processing on Soya Bean Fatty Acids Content and The Lipoxygenase Activity. J. Agric. Sci., 55(1): 55-64.