Isolation and Characterization of Indole Acetic Acid Producing Root Endophytic Bacteria and Their Potential for Promoting Crop Growth

Authors
1 College of Agronomy, Northeast Agricultural University, 150030, Harbin, People Republic’s of China.
2 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, People Republic’s of China.
3 Virus-free Seedling Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, People Republic’s of China.
Abstract
Endophytic bacteria colonize in plant tissues and enhance plant growth by a wide variety of mechanisms. The objectives of this study were to examine the population of root endophytic bacteria in soybean and corn, and to identify IAA-producing endophytic bacterial strains and their growth promoting effect. The density of endophytic bacteria varied irrespective of crops, sampling times and soil amendments. A total of 119 and 277 bacterial isolates were isolated from soybean and corn roots, respectively. 39.6% of the total isolates showed IAA production in the range of 1~23 μg mL-1 in culture medium supplemented with tryptophan. Fourteen isolates, designated as S1-S4 from soybean roots and C1-C10 from corn roots, had the capacity of producing IAA over 10 mg L-1. Based on 16S rRNA gene sequence analysis, the fourteen isolates were closely related to Psychrobacillus, Microbacterium, Lysinibacillus and Bacillus. Pot experiment indicated that the growth-promoting effects varied among these 14 bacterial strains and not all of the strains were able to promote growth of the tested soybean and wheat plants. Strains Microbacterium sp. C4 and Lysinibacillus sp. C7 showed better performances in promoting soybean and wheat seedling growth.

Keywords


1. Ali, B., Sabri, A. N., Ljung, K. and Hasnain, S. 2009. Auxin Production by Plant Associated Bacteria: Impact on Endogenous IAA Content and Growth of Triticum aestivum L. Lett. Appl. Microbiol., 48(5): 542-547.
2. Bakker, M. M., Govers, G. and Rounsevell, M. D. A. 2004. The Crop Productivity–erosion Relationship: an Analysis Based on Experimental Work. Catena, 57(1): 55-76.
3. Bric, J. M., Bostock, R. M. and Silverstone, S. E. 1991. Rapid In situ Assay for Indoleacetic Acid Production by Bacteria Immobilized on a Nitrocellulose Membrane. Appl. Environ. Microbiol., 57(2): 535-538.
4. Dobbelaere, S., Croonenborghs, A., Thys, A., Broek, A. V. and Vanderleyden, J. 1999. Phytostimulatory Effect of Azospirillum brasilense Wild Type and Mutant Strains Altered in IAA Production on Wheat. Plant Soil, 212(2): 153-162.
5. Ferrando, L., Mañay, J. F. and Scavino, A. F. 2012. Molecular and Culture-dependent Analyses Revealed Similarities in the Endophytic Bacterial Community Composition of Leaves from Three Rice (Oryza sativa) Varieties. FEMS Microbiol. Ecol., 80(3): 696-708.
6. Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. and Kloepper, J. 1997. Bacterial Endophytes in Agricultural Crops. Can. J. Microbiol., 43(10): 895-914.
7. Hung, P. Q., Kumar, S. M., Govindsamy, V. and Annapurna, K. 2007. Isolation and Characterization of Endophytic Bacteria from Wild and Cultivated Soybean Varieties. Biol. Fertil. Soil., 44(1): 155-162.
8. Idris, E. E. S., Iglesias, D. J., Talon, M. and Borriss, R. 2007. Tryptophan-dependent Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant Microbe. Interact., 20(6): 619-626.
9. Izaurralde, R. C., Malhi, S. S., Nyborg, M., Solberg, E. D. and Jakas, Q. 2006. Crop Performance and Soil Properties in Two Artificially Eroded Soils in North-central Alberta. Agron. J., 98: 1298-1311.
10. Ji, S. H., Gururani, M. A. and Chun, S. -C. 2014. Isolation and Characterization of Plant Growth Promoting Endophytic Diazotrophic Bacteria from Korean Rice Cultivars. Microbiol. Res., 169(1): 83-98.
11. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S. and Chun, J. 2011. Introducing EzTaxon-e: A Prokaryotic 16S rRNA Gene Sequence Database with Phylotypes that Represent Uncultured Species. Int. J. Syst. Evol. Microbiol., 62: 716-721.
12. Krechel, A., Faupel, A., Hallmann, J., Ulrich, A. and Berg, G. 2002. Potato-associated Bacteria and Their Antagonistic Potential towards Plant-pathogenic Fungi and the Plant-parasitic Nematode Meloidogyne incognita (Kofoid and White) Chitwood. Can. J. Microbiol., 48(9): 772-786.
13. Kuklinsky-Sobral, J., Araújo, W. L., Mendes, R., Geraldi, I. O., Pizzirani-Kleiner, A. A. and Azevedo, J. L. 2004. Isolation and Characterization of Soybean-associated Bacteria and Their Potential for Plant Growth Promotion. Environ. Microbiol., 6(12): 1244-1251.
14. Larcher, M., Muller, B., Mantelin, S., Rapior, S. and Cleyet-Marel, J. C. 2003. Early Modifications of Brassica napus Root System Architecture Induced by a Plant Growth-promoting Phyllobacterium Strain. New Phytol., 160(1): 119-125.
15. Li, J. H., Wang, E. T., Chen, W. F. and Chen, W. X. 2008. Genetic Diversity and Potential for Promotion of Plant Growth Detected in Nodule Endophytic Bacteria of Soybean Grown in Heilongjiang Province of China. Soil Biol. Biochem., 40(1): 238-246.
16. Mano, H., Tanaka, F., Watanabe, A., Kaga, H., Okunishi, S. and Morisaki, H. 2006. Culturable Surface and Endophytic Bacterial Flora of the Maturing Seeds of Rice Plants (Oryza sativa) Cultivated in a Paddy Field. Microbes. Environ., 21(2): 86-100.
17. Mcinroy, J. A. and Kloepper, J. W. 1995. Survey of Indigenous Bacterial Endophytes from Cotton and Sweet Corn. Plant Soil, 173(2): 337-342.
18. Muyzer, G., De Waal, E. C. and Uitterlinden, A. G. 1993. Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-amplified Genes Coding for 16S rRNA. Appl. Environ. Microbiol., 59(3): 695-700.
19. Naveed, M., Qureshi, M. A., Zahir, Z. A., Hussain, M. B., Sessitsch, A. and Mitter, B. 2014. L-Tryptophan-dependent Biosynthesis of Indole-3-Acetic Acid (IAA) Improves Plant Growth and Colonization of Maize by Burkholderia phytofirmans PsJN. Ann. Microbiol., 65(3): 1381-1389.
20. Registeri, R., Taghavi, S. M. and Banihashemi, Z. 2012. Effect of Root Colonizing Bacteria on Plant Growth and Fusarium Wilt in Cucumis melo. J. Agr. Sci. Tech. (Iran), 14(5): 1121-1131.
21. Samavat, S., Besharati, H. and Behboudi, K. 2011. Interactions of Rhizobia Cultural Filtrates with Pseudomonas fluorescens on Bean Damping-off Control. J. Agr. Sci. Tech. (Iran), 13: 965-976.
22. Sarwar, M. and Kremer, R. 1995. Determination of Bacterially Derived Auxins Using a Microplate Method. Lett. Appl. Microbiol., 20(5): 282-285.
23. Schulz, B. J., Boyle, C. J. and Sieber, T. N. 2006. Microbial Root Endophytes. Springer, New York, PP.17-22.
24. Seghers, D., Wittebolle, L., Top, E. M., Verstraete, W. and Siciliano, S. D. 2004. Impact of Agricultural Practices on the Zea mays L. Endophytic Community. Appl. Environ. Microbiol., 70(3): 1475-1482.
25. Sgroy, V., Cassán, F., Masciarelli, O., Del Papa, M. F., Lagares, A. and Luna, V. 2009. Isolation and Characterization of Endophytic Plant Growth-Promoting (PGPB) or Stress Homeostasis-regulating (PSHB) Bacteria Associated to the Halophyte Prosopis strombulifera. Appl. Microbiol. Biotechnol., 85(2): 371-381.
26. Sheng, X. F., Xia, J. J., Jiang, C. Y., He, L. Y. and Qian, M. 2008. Characterization of Heavy Metal-resistant Endophytic Bacteria from Rape (Brassica napus) Roots and Their Potential in Promoting the Growth and Lead Accumulation of Rape. Environ. Pollut., 156(3): 1164-1170.
27. Sturz, A., Christie, B. and Matheson, B. 1998. Associations of Bacterial Endophyte Populations from Red Clover and Potato Crops with Potential for Beneficial Allelopathy. Can. J. Microbiol., 44(2): 162-167.
28. Sui, Y., Jiao, X., Chen, W., Liu, X., Zhang, X. and Ding, G. 2013. Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols. Chin.Geogr. Sci., 23(2): 692-699.
29. Surette, M. A., Sturz, A. V., Lada, R. R. and Nowak, J. 2003. Bacterial Endophytes in Processing Carrots (Daucus carota L. var. Sativus): Their Localization, Population Density, Biodiversity and Their Effects on Plant Growth. Plant Soil, 253(2): 381-390.
30. Difuntorum-Tambalo, D., Paterno, E., Barraquio, W. and Duka, I. 2006. Identification of an Indole-3-acetic Acid-producing Plant Growth-Promoting Bacterium (PGPB) Isolated from the Roots of Centrosema pubescens Benth. Philipp. Agric. Scientist, 89: 149-156.
31. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol., 24(8): 1596–1599.
32. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-specific Gap Penalties and Weight Matrix Choice. Nucleic Acid. Res., 22(22): 4673-4680.
33. Tsavkelova, E. A., Cherdyntseva, T. A., Botina, S. G. and Netrusov, A. I. 2007. Bacteria Associated with Orchid Roots and Microbial Production of Auxin. Microbiol. Res., 162(1): 69-76.
34. Vendan, R. T., Yu, Y. J., Lee, S. H. and Rhee, Y. H. 2010. Diversity of Endophytic Bacteria in Ginseng and Their Potential for Plant Growth Promotion. J. Microbiol., 48(5): 559-565.
35. Zhang, Y. F, He, L. Y., Chen, Z. J., Zhang, W. H., Wang, Q. Y., Qian, M. and Sheng, X. F. 2011. Characterization of Lead-resistant and ACC Deaminase-producing Endophytic Bacteria and Their Potential in Promoting Lead Accumulation of Rape. J. Hazard. Mater., 186(2): 1720-1725.