Anthocyanin Levels and Expression Analysis of Biosynthesis-related Genes during Ripening of Sicilian and International Grape Berries Subjected to Leaf Removal and Water Deficit

Authors
1 Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 98, 95123 Catania, Italy.
2 Council for Research in Agriculture and the Agricultural Economic Analysis, Research Center for citrus and Mediterranean Crops (CREA-ACM), The Corso Savoia 190, 95024, Acireale (CT), Italy.
Abstract
The imposition of managed water deficit and early leaf removal are strategies used to improve the grapes quality in terms of anthocyanin content. The aim of our work was to evaluate the change in total anthocyanin levels during the ripening of the Sicilian grapes (Nero d'Avola and Frappato) and of the international variety of Cabernet Sauvignon, subjected to two different levels of water deficit, 0% (NI) and 30% (I) of estimated crop evapotranspiration, and subjected to Early Leaf Removal (ELR) or Not (NLR). The expression of genes involved in anthocyanin biosynthesis, such as Phenylalanine Ammonia Lyase (PAL) and UDP-glucose-Flavonoid-Glucosyl Transferase (UFGT), was also monitored. Our results indicate that the amount of anthocyanin during the ripening process can be regulated by the application of the aforementioned agronomic practises. The anthocyanin content of Cabernet Sauvignon may be risen either by the simultaneous application of Early Leaf Removal and in water restitution regime (ELR-I) or by the association of water deficit and absence of defoliation (NLR-NI). The analysis of the total content of anthocyanin in Frappato variety has globally revealed that the maximum value in the levels of pigments is reached later than in the other autochthonous Nero d'Avola variety. This finding is of considerable interest since both the harvest time and product processing might be differentiated among varieties. Conversely, the variety Nero d'Avola was not affected by the experimental conditions and showed the highest level of pigments at fully ripe time.

Keywords


1. Allen, R. G., Pereira, L.S., Raes, D. and Smith, M. 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper, No. 56.
2. Bitsch, R., Netzel, M., Frank, T., Strass, G. and Bitsch, I. 2004. Bioavailability and Biokinetics of Anthocyanins from Red Grape Juice and Red Wine. J. Biomed. Biotechnol., 2004(5): 293-298.
3. Braidot, E., Zancani, M., Petrussa, E., Peresson, C., Bertolini, A., Patui, S., Macrì, F. and Vianello, A. 2008. Transport and Accumulation of Flavonoids in Grapevine (Vitis vinifera L.). Plant Signal. Behav., 3: 626-632.
4. Bucchetti, B., Matthews, M. A., Falginella, L., Peterlunger. E. and Castellarin, S. D. 2011. Effect of Water Deficit on Merlot Grape Tannins and Anthocyanins across Four Seasons. Sci. Hortic., 128: 297-305.
5. Castellarin, S. D., Matthews, M. A., Di Gaspero, G. and Gambetta, G. A. 2007a. Water Deficits Accelerate Ripening and Induce Changes in Gene Expression Regulating Flavonoid Biosynthesis in Grape Berries. Planta, 227: 101-12.
6. Castellarin, S. D., Pfeiffer, A., Sivilotti, P., Degan, M., Peterlunger, E. and Di Gaspero, G. 2007b. Transcriptional Regulation of Anthocyanin Biosynthesis in Ripening Fruits of Grapevine under Seasonal Water Deficit. Plant Cell Environ., 30: 1381-1399.
7. Chaves, M. M., Zarrouk, O., Francisco, R., Costa, J. M., Santos, T. and Regalado, A. P. 2010. Grapevine under Deficit Irrigation: Hints from Physiological and Molecular Data. Ann. Bot., 105: 661-676.
8. Crifò, T., Petrone, G., Lo Cicero, L. and Lo Piero, A. R. 2012. Short Cold Storage Enhances the Anthocyanin Contents and Level of Transcripts Related to Their Biosynthesis in Blood Oranges. J. Agric. Food Chem., 60: 476-481.
9. Faccioli, P., Ciceri, G. P., Provero, P., Stanca, A. M., Morcia, C. and Terzi, V. 2007. A Combined Strategy of ‘‘In silico’’ Transcriptome Analysis and Web Search Engine Optimization Allows an Agile Identification of Reference Genes Suitable for Normalization in Gene Expression Studies. Plant Mol. Biol., 63: 679–688.
10. Ferlito, F., Nicolosi, E., Gentile, A., Lo Piero, A.R., Squadrito, M. and Continella, A. 2014. Responses of Four Winegrape Varieties to Managed Water Stress and Partial Defoliation in an Arid Environment. Vitis, 53: 73-80.
11. Fernandes, I., Faria, A. Calhau, C., de Freitas, V. and Mateus, N. 2014. Bioavailability of Anthocyanins and Derivatives. J. Funct. Food., 7: 54–66.
12. Flamini, R., Mattivi, F., De Rosso, M., Arapitsas, P. and Bavaresco, L. 2013. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. Int. J. Mol. Sci., 14: 19651-19669.
13. Ghaderi, N., Talaie, A. R., Ebadi, A. and Lessani, H. 2011. The Physiological Response of Three Iranian Grape Cultivars to Progressive Drought Stress. J. Agr. Sci. Tech., 13: 601-610.
14. Graf, B. A., Mulberry, P. E. and Blumberg, J. B. 2005. Flavonols, flavonones, Flavanones and Human Health: Epidemological Evidence. J. Med. Food., 8: 281-290.
15. Heid, C., Stevens, J., Livak, K. and Williams, P. 1996. Real Time Quantitative PCR. Genome Methods: Genome Research. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
16. Iandolino, A. B., Goes da Silva, F., Lim, H., Choi, H., Williams, L. E. and Cook, D. R. 2004. High-Quality RNA, cDNA, and Derived EST Libraries from Grapevine (Vitis vinifera L.). Plant Mol. Biol. Rep., 22: 269-278.
17. Intrigliolo, D. S. and Castel, J. R. 2009. Response of Vitis vinifera cv. ‘Tempranillo’ to Partial Rootzone Drying in the Field: Water Relations, Growth, Yield and Fruit and Wine Quality. Agr. Water Manage., 96: 282-292.
18. Kay, C. D. 2006. Aspects of Anthocyanin Absorption, Metabolism and Pharmacokinetics in Humans. Nutr. Res. Rev., 19: 137–146.
19. Lo Piero, A. R., Mercurio, V., Puglisi, I. and Petrone, G. 2010. Different Roles of Functional Residues in the Hydrophobic Binding Site of Two Sweet Orange tau Glutathione S-Transferases. FEBS J., 277: 255-262.
20. Lo Piero, A. R., Lo Cicero, L. and Puglisi, I. 2014. The Metabolic Fate of Citric Acid as Affected by Cold Storage in Blood Oranges. J. Plant Biochem. Biotechnol., 23: 161-166.
21. Lorenz, D. H., Eichhorn, K. W., Blei-Holder, H., Klose, R., Meier, U. and Weber, E. 1994. Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L.: ssp. vinifera). Vitic. Enol. Sci., 49: 66-70.
22. Mushtaq, M. A. and Wani, S. M. 2013. Polyphenols and Human Health: A Review. Int. J. Pharm. Bio. Sci., 4: 338-360.
23. Nicolosi, E., Continella, A., Gentile, A., Cicala, A. and Ferlito, F. 2012. Influence of Early Leaf Removal on Autochthonous and International Grapevines in Sicily. Sci. Hortic., 146: 1-6.
24. Passamonti, S., Vrhovsek, U., Vanzo, A. and Mattivi, F. 2005. Fast Access of Some Grape Pigments to the Brain. J. Agric. Food Chem., 53: 7029-7034.
25. Rapisarda, P., Fanella, F. and Maccarrone, E. 2000. Reliability of Analytical Methods for Determining Anthocyanins in Blood Orange Juices. J. Agric. Food Chem., 48: 2249-2252.
26. Sparvoli, F., Martin, C., Scienza, A., Gavazzi, G. and Tonelli, C. 1994. Cloning and Molecular Analysis of Structural Genes Involved in Flavonoid and Stilbene Biosynthesis in Grape (Vitis vinifera L.). Plant Mol. Biol., 24: 743-755.
27. Zietsman, A. J. J., Moore, J. P., Fangel, J. U., Willats, W. G. T. and Vivier, M. A. 2015. Profiling the Hydrolysis of Isolated Grape Berry Skin Cell Walls by Purified Enzymes. J. Agric. Food Chem., 63: 8267-8274.