Comparative Study of Hexavalent Chromium Induced Biochemical Changes With and Without EDTA in Sesbania grandiflora L. Pers.

Authors
Biomolecules and Genetics Division, School of Biosciences and Technology, VIT University, Vellore, India.
Abstract
The toxic effects of chromium in plants, animals and human beings in the environment have been widely studied. In the present study, pot experiment was conducted to determine the effects of chromium on photosynthetic pigments, Nitrate Reductase (NR) activity and total amino acid, proline, total protein and leghaemoglobin content of Sesbania grandiflora (L.) Pers. The seedlings were treated with Chromium Cr (VI), concentrations ranging from 0.38-1.92 mM Kg-1 of soil with 0.35 mM Ethylene Diamine Tetra Acetic acid (EDTA) and without EDTA. The efficacy of EDTA in its presence and absence was compared for periods of 30, 60 and 90 days. Our results in comparison with our control indicate the inhibitory effect of chromium to S.grandiflora. From the results it has been observed that, increasing concentrations of chromium in the presence of EDTA showed a significant increase in proline and total amino acid contents, while the total chlorophyll, leghaemoglobin content and total protein content decreased and the NR activity of the plant was also affected greatly.

Keywords


1. Arnon, D. I. 1949. Copper Enzymes in Isolated Chloroplasts, polyphenol oxidase in Beta vulgaris. Plant Physiol., 24: 1-15.
2. Aleves, M. M., Beca, C. G. G., Carvalho, R. G. D., Castanberia, J. M., Periera, M. C. S. and Vasconcdos, L. A. T. 1993. Chromium (II) Removal in Tannery Wastewater Polishing by Pinus sylvestris Barti. Water Res., 27: 1333-1338.
3. Aydin, D. and Coskun,O, F. 2013. Effects of EDTA on Cr+3 Uptake, Accumulation and Biomass in Nasturtium officinale (Watercress). Ekoloji., 22: 16-23.
4. Azmat,R., Khanum,R., 2005. Effect of Chromium Metal on the Uptakes of Mineral Atoms in Seedlings of Bean Plants Vigna radiate (L.)Wilckzek. Pak. J. Biol. Sci., 8: 281-283.
5. Azmat,R., Parveen, R. and Naqvi, I. I. 2007. Effect of Chromium Combined with Atrazine on Potassium, Sodium, Manganese, Iron and Phosphate in Roots and Shoots in Bean Vigna radita (L.) Wilczek. Saudi J. Chem Soc., 11(1):111-120.
6. Barcelo,J., Poschenriender, C., Ruano, A. and Gunse, B. 1985. Leaf Water Potential in Cr (VI) Treated Bean Plants Phaseolus vulgaris L. Plant Physiol Suppl., 77: 163-164.
7. Bates,L.S., Waldren, R. P. and Deare, I. D. 1973. Rapid Determination of pre Proline for Water Studies. Plant. Soil., 39: 205-207.
8. Baszynski, T., Krol, M. and Wolinka, D. 1981. Effect of Chromate on Photosynthetic Apparatus of Lemna minor L. In: “Photosynthesis II Electron Transport and Photophosphorylation”, (Ed.): Akoynoglou, G. Balbon International Science Services, pp. 245- 246.
9. Cervantes, C., Campos-Garcia, J., Debars, S., Gutierrez-Corona, F., Loza-Tavera, H., Carlos-Tarres-Guzman, M. and Moreno Sanchez, R. 2001. Interaction of Chromium with Microgenesis and Plants. FEMS Microbiol. Rev., 25: 335-347.
10. Cooper,E. M., Sims, J. T., Cunningham, S. D., Huang, J. W. and Berti, W. R. 1999. Chelate Assisted Phytoextraction of Lead from Contaminated Soils. J. Environ. Qual., 28:1709–1719.
11. Chinard, F. P. 1952. Photometric Estimation of Proline and Ornithine. J. Biol. Chem., 199: 91.
12. Diwan, H., Ahmad, A. and Iqbal, M. 2012. Chromium-induced Alterations in Photosynthesis and Associated Attributes in Indian Mustard. J. Environ. Biol., 33:239-244.
13. Ebrahimi, M. and Shahsavand, F. 2014. EDTA Enhanced Phytoextraction Capacity of Scirpus Maritimus L. Grown on Pb-Cr Contaminated Soil and Associated Potential Leaching Risks. IJSRES, 2(10):379-388.
14. Farissi, M., Faghire, M., Bargaz, A., Bouizgaren,A., Makoudi,B., Sentenac, H. and Ghoulam, C. 2014. Growth, Nutrients Concentrations, and Enzymes Involved in Plants Nutrition of Alfalfa Populations under Saline Conditions. J. Agr. Sci. Tech., 16: 301-314
15. Ganesh, S. K., Baskaran, A. L., Chidambaram, A. and Sundaramoorthy, P. 2009. Influence of Chromium Stress on Proline Accumulation in Soybean (Glycine max L. Merr.) Genotypes. GJER, 3(2): 106-108.
16. Huang, H., Li, T., Tian, S., Gupta, D. K., Zhang, X. and Yang, X. 2008. Role of EDTA in Alleviating Lead Toxicity in Accumulator Species of Sedum alfredii H. Bioresour. Technol., 99: 6088–6096.
17. Kuzentsov, W. and Shevyakova, N. L. 1997. Stress Responses Two Tobacco Cells to High Temperature and Salinity, Proline Accumulation and Phosphorylation of Polypeptids Physiol. Plantarum., 101: 477-482.
18. Lowry, O. H., Rosendrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with Folin-phenol Reagent. J. Biol. Chem., 193: 265-275.
19. McCutcheon, S. C. and Schnoor, J. L. 2003. Phytoremediation: Transformation and Control of Contaminants. Wiley, New York.
20. Mishra, S. and Doble, M. 2008. Novel Chromium Tolerant Microorganisms: Isolation, Characterization and Their Biosorption Capacity. Ecotoxicol. Environ. Saf., 71: 874-879.
21. Moore, S. and Stein, W. S. 1948. Photometric Method for Use in the Chromatography of Amino Acids. J. Biol. Chem., 176: 367-388.
22. Mohanty, M. and Patra, H. K. 2013. Effect of Ionic and Chelate Assisted Hexavalent Chromium on Mung Bean Seedlings (Vigna radiata L. Wilczek var k-851) during Seedling Growth. J. Stress Physiol. Biochem., 9 (2): 232-241.
23. Najafian, M., Kafilzadeh, F., Azad, H. N. and Tahery, Y. 2012. Toxicity of Chromium (Cr6+) on Growth, Ions and Some Biochemical Parameters of Brassica napus L. World Appl Sci J., 16(8):1104-1109.
24. Panda, S. K. and Choudhury, S. 2005. Chromium Stress in Plants. Braz. J. Plant. Physiol., 17(1): 95-102.
25. Pantawat, S. and Tippawan, P. 2014. Comparison of EDTA and EDDS Enhanced Phytoextraction of Cr and Pb from Contaminated Soil by Ananas comosus (l.) Merr. AJABS, 9 (3): 361-368.
26. Rai, U. N., Tripathi, R. D. and Kumar, N. 1992. Bioaccumulation of Chromium and Toxicity on Growth, Photosynthetic Pigments, Photosynthesis In vivo Nitrate Reductase Activity and Protein Content in a Chlorococcalean Green Alga Glaucocystis nostochinearum Itzigsohn. Chemosphere, 25: 721-732.
27. Rai, V. P., Vajpayee, P., Singh, S. N. and Mehrotra, S. 2004. Effect of Chromium Accumulation on Photosynthetic Pigments, Oxidative Stress Defense System, Nitrate Reduction, Proline Level and Eugenol Content of Ocimum tenuiflorum L. Plant Sci., 167(5): 1159-1169.
28. Raghuram, N. and Sopory, S. K. 1995. Light Regulation of Nitrate Reductase Gene Expression Mechanism and Signal Response Coupling. Physiol. Mol. Biol. Plants., 1:103-104.
29. Sadasivam, S. and Manickam, A. 1992. Biochemical Methods. Second Edition, New Age International (P) Limited Publishers, New Delhi and TNAU, Coimbatore, India. 256 PP.
30. Sinam, G., Sinha, S. and Mallick, S. 2011. Effect of Chromium on Accumulation and Antioxidants in Cucumis utillissimus L. Response under Enhanced Bioavailability Condition. J. Environ. Sci., 23(3): 506-512.
31. Sinha, S., Saxena, R. and Singh, S. 2005. Chromium Induced Lipid Peroxidation in the Plants of Pistia stratiotes L.: Role of Antioxidants and Antioxidant Enzymes. Chemosphere, 58: 595-604.
32. Shen, Z. G., Li, X. D., Wang, C. C., Chen, H. M. and Chua, H. 2002. Lead Phytoextraction from Contaminated Soil with High Biomass Plant Species. J. Environ. Qual., 31: 1893–1900.
33. Unnikannan, P., Baskaran, L., Chidambaram, A. L. A. and Sundaramoorthy, P. 2013. Chromium Phytotoxicity in Tree Species and Its Role on Phytoremediation. Insight Bot., 3(1): 15-25.
34. Vajpayee, P., Tripathi, R. D., Rai, U. N., Ali, M. B. and Singh, S. N. 2000.Chromium (VI) Accumulation Reduces Chlorophyll Biosynthesis, Nitrate Reductase Activity and Protein Content in Nymphaea alba L. Chemosphere, 41(7): 1075–1082.
35. Vajpayee, P., Rai, U. N., Ali, M. B., Tripati, R. D., Yadav, U., Sinha, S. and Singh, S. N. 2001. Chromium Induced Physiological Changes in Vallisneria spiralis L. and Its Role in Phytoremediation of Tannery Effluent. Bull. Environ. Contam. Toxicol., 67: 246-256.
36. Vijayaraghavan, J., Gupta, A., Guha-Mukherjee, S. and Sopory, S. K. 1982. Stimulation of Nitrate Reductase by Light and Ammonium in Spirodela oligorrhiza. J. Exp. Bot., 33: 705-716.
37. Wani, P. A., Khan, M. S. and Zaidi, A. 2007. Cadmium, Chromium and Copper in Green Gram Plants. Agron. Sustain. Dev., 27:145-153.
38. Wang, K. S., Huang, L. C., Lee, H. S., Chen, P. Y. and Chang, S. H. 2008. Phytoextraction of Cadmium by Ipomoea aquatic (Water Spinach) in Hydroponic Solution: Effects of Cadmium Speciation. Chemosphere, 72: 666–672.
39. Witham, F. H., Blaydes, B. F. and Devlin, R. M.1971. Experiments in Plant Physiology. Van Nostrand Reinhold, New York, USA, PP.167-200.